

×10:21

Tropical, Convective-Scale NWP for Singapore: The 'SINGV' Project

Dale Barker and team, Met Office, Exeter, UK Hans Huang and team, MSS, Singapore ECMWF Tropical Workshop, 7 November 2016

- 1. Singapore Weather
- 2. Global NWP: Skill In SE Asia
- 3. High-Resolution NWP: The SINGV Project
 - a. UM / WRF Studies
 - b. High-resolution UM studies
 - c. Impact of UM driving model (UM, ECMWF)
 - d. High-resolution data assimilation and observations
- 4. Future Work

5. Summary

Singapore Weather: Surface Temperature

• Little variability through year....

Raizan, MSS

Singapore Weather: Rainfall

• NE (Dec-Mar) and SW (Jun-Sep) monsoon seasons

Raizan, MSS

- Strong NE winds, wet monsoon surge
- Speed convergence enhanced by convective heating, sea-breeze

Raizan, MSS

Singapore Weather: SW Monsoon (~Jun-Sep)

- Speed convergence enhanced by local convective heating
- "Sumatra" squalls pre-dawn/morning line of thunderstorms

2. Global NWP Skill in SE Asia

Tropical Winds Performance Impact of GA6-GC2 ENDGame/Physics/Resolution

GA6

2011

2012

2013

2014

Met Office

Tropical Winds at 10m Impact of GA6-GC2 ENDGame/Physics/Resolution

Met Office

Evolution of New Dynamics

- Same equation set & variables $(\theta \pi)$
- Same horizontal staggering (Arakawa C-grid)
- Same vertical staggering (Charney-Phillips)
- (Iterative) Semi-implicit semi-Lagrangian
- Improved (iterative) solution procedure:
- More implicit, approaching Crank-Nicolson
- \Rightarrow Improved robustness, accuracy and variability
- Improved scalability (change variable held at poles)
- Option for improved conservation via SLICE (not in GA5)

Historical Global NWP Performance: 850hPa winds – latest results

Jul 15 (PS36) 'Minor' Science Changes – Helmholtz solver tolerance, orography, 4DVar

3. SINGV Project Introduction

Met Office

- Collaboration: Met Office and Meteorological Service Singapore (MSS).
- 5 year project (2013 2018) involving ~4FTE/yr from each partner.
- Tropical, km-scale NWP R&D plus operational implementation target.
- Core Model R&D -> Evaluation -> DA -> Ensemble + Tech Infrastructure

WRF Research Model Config

• SINGV WRF Research Configuration defined in summer 2013 with assistance from NCAR (Jimy Dudhia, Wei Wang, Dave Gill)

[•] WRF V3.5

- Model top: 10mb
- Model levels: 74
 - Same as UM, but lower lid
- Resolution: 4.5km / 1.5km
- 364x342/364x382 LAT-LON
- Timestep: 24s / 9s
 - c.f. UM = 100s / 50s
- Explicit convection
- YSU PBL
- WSM6 microphysics
- GFS p-level forecast IC/LBCs
- NoDA

SINGV: UM/WRF Comparison

• 'Clean' assessment of impact of driving model (e.g. global UM, ECMWF, GFS) and regional model (UM, WRF).

- 2 1-month test periods: Jun 11, Dec 2012 chosen.
- 00/12UTC 'downscaler' (i.e. no DA) T+30 UM/WRF forecasts.
- Verify T+6-30 accumulated precip (bias, fractional skill score (FSS)).
- Experiments performed:
 - GFS->WRF: WRF 13/4.5/1.5km driven by GFS IC/LBCs.
 - UM->WRF: WRF 4.5/1.5km driven by global UM IC/LBCs.
 - UM->UM 4.5/1.5km driven by global UM IC/LBCs.

Met Office

>1mm/day

- UM-WRF has too many light rainfall events.
- However, UM-WRF is clearly the most skilful.
- Impact of driving global model is very large.
- UM-UM 1.5 km model is almost as skilful as UM-WRI

Stats for 1.5 km domain Big dots = 4.5 km model Small dots = 1.5km model

²⁴hr Precipitation Accumulation, 1.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Met Office

>1mm/day

• Two UM-UM (4.5km + 1.5km) models much more different to each other than either pair of WRF models.

> • i.e. LAM UM is much more sensitive to horizontal resolution than WRF.

24hr Precipitation Accumulation, 1.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Meteorological

Centre for Climate Research Singapore

SERVICE

SINGAPORE

Stats for 1.5 km domain Big dots = 4.5 km model Small dots = 1.5km model

Met Office

>4mm/day

24hr Precipitation Accumulation, 4.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Met Office

>8mm/day

- For moderate rainfall rates:-
- **1.UM-UM**

2.UM-WRF

- 3.GFS-WRF
- So see benefit of both global UM and LAM UM.

24hr Precipitation Accumulation, 8.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Met Office

>16mm/day

- For moderate rainfall rates:-
- 1.UM-UM

2.UM-WRF

- 3.GFS-WRF
- So see benefit of both global UM and LAM UM.

Stats for 1.5 km domain Big dots = 4.5 km model Small dots = 1.5km model © Crown copyright Met Office 24hr Precipitation Accumulation, 16.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Met Office

>32mm/day

 Too few events for robust stats for heavy rainfall.

 With that caveat in mind, results still consistent with moderate rainfall events.

24hr Precipitation Accumulation, 32.0, Fractions Skill Score (Forecast - Analysis), Area 537, T+24, Equalized and Meaned between 20110601 06:00 and 20110630 18:00, Analysis

Meteorological

Centre for Climate Research Singapore

SERVICE

SINGAPORE

- Based on PS35 UKV ENDGame
 - No MURK aerosol
 - But L80 rather than L70
- Changes from Version 1
 - 1. P2A blended BL scheme
 - 2. Single 1.5 km domain
 - As opposed to version 1 = double nest
 - 1092 x 1026 x L80, dt=50s
 - Fixed not variable resolution
 - ~5 times cost of Version 1 configuration

Stu Webster

Conservation of moisture

Simon Vosper

Met Office

 Excess convective rainfall is partly a result of spurious rain water associated with nonconserving SL advection

•Work underway to understand and address the problem:

 Conservation errors associated with sharp gradients in moisture fields and strong convergence and updraughts

 Enforcing mass-conservation (Priestley-like approach) helps and reduces peak rain rates

Conservation of moisture

Met Office

Move to PLF (red) reduces the resolution sensitivity to precipitation rate.

Problem worse at 4.5km.

Stuart Webster

•Aranami *et al.* mass fixer applied to moisture variables

- •Removes highest rain rates
- •~10% reduction in mean rainfall

SINGV V3: Conservation + Stochastic Physics

Met Office

Combination of stochastic $\Delta \hat{\theta}$, Δq^* and mass fixer in Singapore SINGV model •Reduced resolution sensitivity •Reduction in area of high (excessive) rain rates •Less blobby look to surface precipitation patterns (Stu Webster)

Stu Webster

- Previous WRF results illustrate strong dependence on driving model.
- MSS have been running WRF within ECMWF – good results compared to GFS.
- ECMWF model main tool for MSS forecasters.
- Q: What is impact of driving model on SINGV: global UM and ECMWF?
- Technicality: Use 0.1deg cut-out of ECMWF ICs/LBCs on local area, no DA.

UM Driver, UM 1.5mT T+0

18 20....22 24 25 ...23 20...32 34 EC Driver, UM 1.5mT T+0

Initialised 18th August 00z

• T+36 forecasts run from 00Z/12Z analyses for period 17th August 12Z to 23rd August 12Z.

• 3 Sumatran squall events during this period, which could all potentially be captured by 3 successive forecasts (so up to 9 forecasts could capture a squall).

• Illustrate performance using forecasts initialised 18th 00Z: EC driven runs better capture the squall (if a little late).

- Over the 9 forecasts:-
 - squall missed by all models in 1 forecast.
 - All models captured the squall and none clearly better in 3 forecasts.
 - EC driven runs better captured the squall in 4 forecasts.
 - UM driven runs produced spurious squall in 1 forecast, EC better in this case too.
- Overall EC driven SINGV forecasts better capture squall events.
- Studies continuing......

d. SINGV DA: Foci for research

- Obs focus: Radar, satellite (e.g. HIMAWARI 8), GPS RO, etc
- Technique: 3DVar initially, LHN, tropical covariances.
- Consider advanced DA (4DVar/4DEnVar) later...

SINGV DA (version 2): Observations

Adam Maycock

Met Office

Jlts

mber 2015

© Crown co

- Deep-tropics provides a challenging environment for model, obs and DA.
- Global model tropical performance improving, but significant biases remain.
 Strongly influences performance of high-resolution NWP e.g. SINGV.
- SINGV project focussed on km-scale NWP initial focus on basic model performance e.g. resolution, physics sensitivity. Beginning DA, EPS work…
- SINGV current work:
 - Model improvements (V-grid, conservation, 'blobbiness').
 - Data assimilation cycling 3DVar with full range of obs, LHN.
 - Appropriate evaluation (metrics, observations, forecaster input).
 - Need for uncertainty estimation through ensemble.
 - Operational implementation (MSS forecaster's view critical!).

Thank You For Listening!

