

The ESA ADM-Aeolus Doppler Wind Lidar Mission – Status and validation strategy

Anne Grete Straume¹, Thomas Kanitz¹, Jonas Von Bismarck² and Dirk Schuettemeyer¹

¹ESA-ESTEC, The Netherlands, ²ESA-ESRIN, Italy

ECMWF/ESA Workshop: Tropical modelling, observations and assimilation

http://www.esa.int/esaLP/LPadmaeolus.html

ADM-Aeolus teams

- ADM-Aeolus Project team
- Airbus Defence and Space & partners
- Mission science and campaigns team
- Ground Segment and data quality teams
- Flight Operations Team
- Aeolus Mission Advisory Group
- L1 and L2 algorithm development teams (DLR, DoRIT, ECMWF, KNMI, MeteoFrance)
- Campaign and CAL/VAL teams

ESA's Earth Observation Programme

The importance of global direct wind observations

 $\begin{array}{c} {\rm Horizontal\ scale\ R\ (km)} \\ {\rm g:\ gravitational\ acceleration,\ h:\ structure\ depth,\ \omega:\ angular} \\ {\rm velocity\ of\ Earth's\ rotation,\ \phi:\ latitude\ (here\ 45^{\circ})} \end{array}$

Radiosondes

Tropical modelling, observations and assimilation Workshop, ECMWF, 7-10 November 2017

Global temperature soundings

Aeolus 12 h sampling

European Space Agency

The importance of global direct wind observations

Tropical modelling, observations and assimilation Workshop, ECMWF, 7-10 November 2017

European Space Agency

ADM-Aeolus Mission Objectives

Scientific objectives

- To improve the quality of weather forecasts;
- To advance our understanding of atmospheric dynamics and climate processes;

Explorer objectives

 Demonstrate space-based Doppler Wind LIDARs potential for operational use.

Observation means:

 Provide global measurements of horizontal wind profiles in the troposphere and lower stratosphere

<u>Payload</u>

ALADIN: Atmospheric LAser Doppler INstrument

Mission characteristics

Mission Parameters

- Orbit: sun-synchronous
- Mean altitude: ~320 km
- Local time: 18:00 ascending node
- Inclination: 96.97°
- Repeat cycle: 7 days / 111 orbits
- Orbits per day: ~16

ADM-Aeolus Measurement Principle

- UV Doppler wind Lidar operating at 355 nm and 50 Hz PRF in continuous mode, with 2 receiver channels (HSRL):
 - Mie receiver (aerosol & cloud backscatter)
 - Rayleigh receiver (molecular backscatter)
- The line-of-sight is pointing 35° from nadir to derive horizontal wind component
- The line-of-sight is pointing orthogonal to the ground track velocity
- Horizontal averaging (on board and on ground)
- Spacecraft regularly pointed to nadir for calibration

Instrument Status

- 1. Instrument Full Functional Performance Test (IFP) April 2016
 - a. End-to-end testing in ambient conditions
 - b. Random errors extrapolated from tests within 5% of expectations
 - c. Bias requirements met
 - d. Detailed correlation analysis confirm this in finalization
- 2. Instrument delivery: August 2016
- 3. Integration on platform: October 2016

- 1. Instrument has been integrated on the platform
- 2. Testing of instrument on platform: April 2017

3. Satellite launch readiness: October 2017

- 4. Launch: at the earliest 6 weeks thereafter
- 5. Commissioning phase: L L+3 months

6. Operational Phase: L+3 months – 3 years

Mission products

1. Primary product (L2b): Horizontally projected LOS (HLOS) wind profiles Approximately zonal at dawn/dusk (6 am/pm) ~85 km horizontal integration – scene classified Aeolus L1b product available NRT + L2b processor and gh Channe BUFR convertor from ECMWF ESA EE binary format, L2b BUFR conversion Aeolus L2a product available NRT (EE format) Ferrel cel cloud/aerosol top heights

- Cloud/aerosol base height (optically thin)

30°N

adley ce

Simulated Aeolus Rayleigh (left) and Mie (right) winds

Courtesy Michael Rennie, ECMWF

(L2B processor development: KNMI & ECMWF)

Data processing and distribution

Data access portal

	Online Dissemination	European Space Agency
ESA Earthnet		Welcome Guest
		Collections
Directory -	Tree View - L2B_Products	
L2B_Products		Info
Collection	L2B_Products	
Baseline	2B03	
Year-Month	2007-10	
<u>Day</u>	30	
Available product	s:	
AE_OPER_ALD	D_U_N_2B_20071030T033729_20071030T050941_0002	
	EO-SIP EO Product Browse Image Metadata	
AE_OPER_ALC	D_U_N_2B_20071030T155029_20071030T172341_0002	

http://aeolus-ref-addf.eo.esa.int/addf/

In orbit instrument and product verification and validation

- 1. Satellite and Instrument verification by industry
- 2. Verification of ESA data processing and operation is done by
 - a. Flight Operation teams
 - b. Payload Data Ground Segment teams
 - c. Algorithm core team with L1 and L2 data processing experts at DLR, MeteoFrance, KNMI and ECMWF
 - d. L2 processing centre at ECMWF including NWP monitoring
- 3. Product verification with international science teams
 - a. Collocated observations
 - b. Modelling
 - c. Science

ADM-Aeolus: Observational Requirements Winds only!

		PBL	Troposphere	Stratosphere	
Vertical domain	[km]	0-2	2-16	16-20 (30)*	
Vertical resolution	[km]	0.5	1.0	2.0	
Horizontal domain		Global			
Number of profiles	[hour ⁻¹]	>100			
Horizontal track data availability		> 95%			
Temporal sampling	[hour]	12			
Horizontal resolution / integration	[km]	15 (goal) – 100 (threshold)			
Horizontal sub-sample length	[km]	3 km			
Random error (HLOS Component)	[m/s]		2.5	3 (3-5)**	
Systematic error (HLOS component)	[m/s]	0.7	0.7	0.7	
Dynamic Range, HLOS	[m/s]	±100 (150)*			
Error Correlation over 100 km		< 0.1			
Probability of Gross Error	[%]	5			
Timeliness	[hour]	3			
Length of Observation Dataset	[yr]	3			

()*: Desirable / Implemented ()**: corresp. to 20-30 km.a.s European Space Agency

Aeolus Scientific CAL/VAL Requirements

1. Aeolus CAL/VAL Requirements to be addressed by ESA and science teams

2. Goal: Verification of Mission Requirements (L2)

- 3. Recommendations for definition of CAL/VAL techniques
- 4. Identification of areas covered by CAL/VAL proposals
- 5. Guidelines for CAL/VAL proposal review process
- 6. Guidelines for CAL/VAL Implementation Plan

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Understanding product properties
 - b. Product requirements
 - c. Areas of special attention:
 - Sampling, error properties, product information content (instrument capability), validation activity grouping
 - d. Instrumentation and modelling needs
 - e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- 3. Novel data products (e.g. surface reflectivity)
- 4. Campaign coordination

Data Processing

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Product properties
 - b. Product requirements
 - c. Areas of special attention:
 - Sampling, product accuracy, validation activity grouping
 - d. Instrumentation and modelling needs
 - e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- **3.** Novel data products (e.g. surface reflectivity)
- 4. Campaign coordination

Mission Requirements

		PBL	Troposphere	Stratosphere	
Vertical domain	[km]	0-2	2-16	16-20 (30)*	
Vertical resolution	[km]	0.5	1.0	2.0	
Horizontal domain		Global			
Number of profiles	[hour ⁻¹]	>100			
Horizontal track data availability		> 90%			
Temporal sampling	[hour]	12			
Horizontal resolution / integration	[km]	15 (target) – 100 (threshold)			
Horizontal sub-sample length	[km]	km scale			
Random error (HLOS Component)	[m/s]	1	2.5	3*	
Systematic error (HLOS component)	[m/s]	0.7	0.7	0.7	
Dynamic Range, HLOS	[m/s]	±150			
Error Correlation over 100 km		< 0.1			
Probability of Gross Error	[%]	5			
Timeliness	[hour]	3			
Length of Observation Dataset	[yr]	3			

* Requirements are given from 0 to 20 km altitude, but measurements up to 30 km are highly desirable. A relaxed requirement for accuracy is acceptable between 20 and 30 km

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Product properties
 - b. Product requirements
 - c. Areas of special attention:
 - Sampling, product accuracy, validation activity grouping
 - d. Instrumentation and modelling needs
 - e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- **3.** Novel data products (e.g. surface reflectivity)
- 4. Campaign coordination

Areas deserving special attention by CAL/VAL

Aeolus sampling:

- a. Horizontal sampling: 3 km (measurement scale) 87 km (observation scale)
- b. 250 m, 500 km (PBL), 1 km (FT), 2 km (Stratosph)
- c. Terrain model
- d. Optimization of Aeolus vertical sampling
 - Change in sampling strategy up to 8 times per orbit
- e. Measurement representativity and error characteristics must be taken into account

Ellipsoid

Aeolus wind/aerosol quality as function of scene

1. Product accuracy and representativity will depend on

- a. Scene heterogeneity (wind and particle variability)
 - Signal averaging length
 - Channel cross-talk correction (HSRL system: Mie signal contaminating Rayleigh signal)
- b. Instrument and data processing errors (next slide)

Examples of ADM-Aeolus error sources

1. Instrument errors

- a. Instrument alignment and transmission
- b. Spectrometer imperfections
- c. Instrument degradation and laser stability,

2. Satellite / orbit related errors

- a. Harmonic biases from thermal variability
- b. Range dependent biases
- c. Pointing stability, ...

3. L1 (and lower) processing errors

- a. Calibration
- b. Signal processing and QC
- **c.** EQ, ...

4. L2 processing errors

EQ, ...

С.

- a. A-priori T and p (ECMWF)
- b. Calibration, signal processing and QC ...

Examples of spatially varying error sources

- **1.** Orbit phase dependent wind biases:
 - a. Thermo-elastic solar aspect angle
 - b. Thermo-elastic effects thermal fluxes
 - **c. Satellite altitude** (harmonic rangedependent biases)

Harmonic bias correction scheme implemented using ground returns and error fitting through harmonic functions

2. Range-dependent wind bias

a. Variable backscatter angle on telescope as function of range (time)

Range Dependent correction scheme being implemented

3. Regional T and p accuracy variations

Aeolus wind/aerosol quality as function of scene

1. Product accuracy and representativity will depend on:

- a. Scene heterogeneity (wind and particle variability)
 - Signal averaging length
 - Channel cross-talk correction (HSRL system: Mie signal contaminating Rayleigh signal)
- b. Instrument and data processing errors
- c. Error correlation

Range-dependent biases

Laser frequency jitter

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Product properties
 - b. Product requirements
 - **c.** Areas of special attention:
 - Sampling, product quality, validation activity grouping

d. Instrumentation and modelling needs

- e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- **3.** Novel data products (e.g. surface reflectivity)
- 4. Campaign coordination

- 1. Pre-launch campaigns for
 - a. Instrument characterization, algorithm preparation, calibration
- 2. Post-launch CAL/VAL:
 - a. Airborne (wind, aerosol, temperature, ...)
 - b. Ground-based (radiosondes, lidars, profilers, ...)
 - c. Satellite-to-satellite (CALIPSO, scatterometers, AMVs, ...)
 - d. NWP monitoring
 - e. Aerosol transport models / air quality models
 - f. Back trajectories
 - g. Algorithm intercomparison

Example of planned NWP monitoring of Aeolus at ECMWF

Some examples of OBSTAT output Courtesy Mohamed Dahoui (ECMWF)

European Space Agency

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Product properties
 - b. Product requirements
 - c. Areas of special attention:
 - Sampling, product accuracy, validation activity grouping
 - d. Instrumentation and modelling needs
 - e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- **3.** Novel data products (e.g. surface reflectivity)
- 4. Campaign coordination

Comparisons with collocated instrumentation

- 1. Sampling of different atmospheric volumes
- 2. Temporal variability
- 3. Spatial variability
 - a. Vertical
 - b. Horizontal
- 4. Different instrument accuracy and product information content
 - a. e.g. CALIPSO and Aeolus extinction profile information content differ!

Aeolus Scientific CAL/VAL Requirements document

- 1. Definitions
- 2. What is needed for Wind and Aerosol / Cloud product validation:
 - a. Product properties
 - b. Product requirements
 - c. Areas of special attention:
 - Sampling, product accuracy, validation activity grouping
 - d. Instrumentation and modelling needs
 - e. Comparing data from different instruments and spatial/temporal sampling
 - Instrument characteristics (accuracy, information content)
 - Atmospheric heterogeneities
- **3.** Novel data products (e.g. surface reflectivity)

4. CAL/VAL coordination

Aeolus Commissioning and Operational activities

CAL/VAL Team organization (non-ESA)

Team / Role	Function	Name	Organization
Phase C/D Industrial Team	spacecraft and payload development and expert team		ADS-Astrium
Algorithm Core teams	L1B/2A/2B algorithm development, validation expert team		DLR, ECMWF, KNMI, MétéoFrance
ECMWF Operations Team	L2bP MetPF team		ECMWF
CAL/VAL Core Team	CalVal expert team, in charge of specific calibration, characterization and optimization tasks		DLR A2D Team,
AO Team 1	CAL/VAL Teams - modelling		
AO Team 2	CAL/VAL Team		
AO Team X			

CAL/VAL Implementation Plan

- 1. Objective
- 2. Mission
- 3. Products, requirements, information content,
- 4. CAL/VAL requirements, lessons learnt pre-launch
- 5. CAL/VAL Proposals
 - a. Summary, expected innovation and results, data
 - b. Mission phase
 - c. Mapping to Commissioning and CAL/VAL Plan (Gaps)
 - d. Status assessment
- 6. CAL/VAL coordination
- 7. Links to other missions/campaigns
- 8. Exchange of results, tools, etc.

Geographical coverage CAL/VAL proposals

- 1. ADM-Aeolus selected in response to identified deficiency in the Global Observing System on global coverage of direct wind profile observations
- 2. ADM-Aeolus will serve Numerical Weather Prediction and Air Quality Forecasting and support Climate Modelling (verification, parameterizations)
- **3.** ECMWF Product Monitoring
- 4. 17 (inter-) national CAL/VAL teams are getting ready to validate and exploit ADM-Aeolus data
- 5. Aeolus CAL/VAL Rehearsal Workshop March 28-30 2017, Toulouse
- 6. ADM-Aeolus launch readiness: 4th quarter 2017
- ADM-Aeolus L1 and L2 data availability to science community expected 3-5 months after launch

http://www.esa.int/esaLP/LPadmaeolus.html