Tropical Waves, Latent Heating, and Wave-Driving of the Tropical Circulation

<u>M. Joan Alexander¹</u>, David Ortland¹, Ji-Eun Kim², and Alison Grimsdell¹ ¹NorthWest Research Assoc., ²Joint Inst. for Study of Atmospheres & Oceans

Outline

- 1. Introduction
- Idealized model of tropical waves forced by realistic latent heating Q(x,y,z,t)
- 3. Validation of gravity waves with HIRDLS/GPS and balloon observations
- 4. Model results on gravity wave variations with ENSO and stratospheric drag

Latent Heating and Tropical Circulation

Schumacher et al. [2004]

Tropical Waves & Interactions

Errors in Tropical Analyzed Winds

Podglajen et al. [2014]

Large errors occur in Indian and Pacific Oceans due to lack of observations

Errors associated with missing or misrepresented large-scale Kelvin and Yanai waves

- Lack of tropical wind data
- Vertical resolution?
- Convection parameterization?

Convective Coupling at High Frequencies

Kim & Alexander [2013]

Tropical Wavenumber-Frequency Spectrum of Precipitation

Tropical Gravity Waves in Global Models

- QBO is key factor in tropical-extratropical teleconnections
- QBO predictability for near-term climate prediction

Molod et al (2015)

- GEOS-5 model for the development of MERRA2
- Gravity wave tuning to improve representation of the QBO.

Convection Source Parameterizations

- Some models like WACCM include convective gravity wave sources
- Wave spectrum depends on strength/depth of latent heating

Intermittency in Sources

Gravity Wave Parameterization Paradigm

The Paradigm: Orographic = big amplitude waves, break lower Non-orographic = small amplitude waves, break higher

Idealized Gravity Wave Model

Forced with heating derived from algorithm based on Radar-observed Precipitation

Normalized kernel function

10

Quantitative Comparison to Observed Waves

Gravity Waves Forced by Tropical Heating

Mean Heating December 2007

- Waves forced by latent heating Q(x,y,z,t) 30°S–30°N
- Variable heating at 0.25°; ∆t=30min

- Heating derived from global rain observations (e.g. CMORPH, Joyce et al. 2004) Method of Ryu et al. [2011] includes convective and stratiform heating profiles
- Idealized model T120, Δz =500m resolution designed to simulate waves observed with HIRDLS+GPS method

Model Comparisons: Dec 2006 vs Dec 2007

Gravity Wave Validation: HIRDLS 2005-08

HIRDLS "2D" Momentum Flux

HIRDLS has best coverage and resolution in lower stratosphere. Method is limited to a "2D" approach due to the satellite sampling pattern.

Need "3D" information off the measurement track to correct the major known bias in these momentum fluxes

Combining GPS-RO and HIRDLS

- Previous analysis compared amplitudes of largest wave components of colocated profiles, suggested HIRDLS & COSMIC RO temperatures have approximately same vertical resolution [Gille et al 2008; Barnett et al 2008].
- Wright et al. (2011): HIRDLS resolution = 1 km, COSMIC slightly better, and COSMIC amplitudes slightly larger.

Combining GPS-RO and HIRDLS

Alexander [2015]

Used neighboring profile triads to solve for the true direction of propagation δ with method in Evan & Alexander [2008]:

$$\delta = \arctan\left(\frac{\lambda_2\cos\theta_2 - \lambda_1\cos\theta_1}{\lambda_1\sin\theta_1 - \lambda_2\sin\theta_2}\right)$$

 Will show results 17-22km in lower stratosphere as input to the stratosphere.

Combined GPS and HIRDLS Alexander [2015]

Validation: Compare Model & Observations

Monthly-mean analysis results (18-22 km):

20°S—20°N	<u>Model</u>	<u>GPS/HIRDLS</u>	<u>HIRDLS-only</u>
Zonal mean flux Dec 2007	4.0 mPa	3.8 mPa	0.8 mPa
Fraction zonal flux Dec 2007	65%	81%	N/A
Zonal mean flux Dec 2006	4.0 mPa	3.1 mPa	0.8 mPa
Fraction zonal flux Dec 2006	64%	79%	N/A

At 20 km:

Zonal mean flux Mar-May 2010 PreConcordiasi balloons: 3.9 – 5.4 mPa (balloons include a broader spectrum of waves) Model zonal mean fluxes at 20km: 3.3 – 3.4 mPa

Validation: Momentum Flux Distributions

 10^{-5}

0

20

- Long duration balloon observations in the tropics (red and black)
- Model gravity wave fluxes (below) display same log-normal shape, although fewer large values near the balloon altitude (20km).

10⁰

 10^{-1}

10⁻²

 10^{-3}

10-4

 10^{-5}

0

20

40

Absolute Momentum Flux (mPa)

Occurrence Frequency

Dec 2006

km

80

100

20 km

17

60

40

Absolute Momentum Flux (mPa)

60

80

100

Zonal-mean Momentum Flux

Average of all longitudes, and altitudes 15-18 km Wavelengths < 3000 km, Periods < 1 day

- La Nina Flux > El Nino Flux
- No obvious differences in spectral widths

Model Results: Regional Wave Spectra

December 2006

Mean Heating Pattern

Model Results: Regional Wave Spectra

December 2007

Mean Heating Pattern

Summary & Conclusion

- Convective latent heat release as gravity wave source

 waves forced with realistic Q(x,y,z,t) in idealized
 nonlinear models validated with observations
- Convective waves with realistic strong amplitudes drive circulation changes in the lowermost stratosphere

 even realistic convective source parameterizations
 under-estimate larger amplitude gravity waves and drag

