
Preparing atmospheric modeling codes
for the latest generation MIC

architecture (KNL)

October 25, 2016

Jim Rosinski

NOAA/ESRL

Intel Contributors

• Mike Greenfield

• Ruchira Sasanka

• Ashish Jha

• Richard Mills

Workshop on high perfromance computing

Outline

• Hardware used for FV3 and NIM testing

• New features in KNL—user implications

• NIM model: thread scaling, performance on
multiple generations of Intel hardware

• FV3 overview for software engineers

• Performance issues and non-issues

• Performance results: HSW vs. KNL

• Future directions

Workshop on high perfromance computing

Machine specs
Machine Arch Cores/

node
Hyper
threaded?

CPU Compiler MPI

Stampede
1.0

SNB/KNC 16/61 No/4-way 2.7
GHz/1.1
GHz

Ifort
15.0.2

Impi 5.0.2
(Mellanox
FDR IB)

Stampede
1.5

KNL 68 Yes (4-way) 1.4 GHz Ifort
17.0.0

Impi 17.0.0
(Omnipath)

theia HSW-EP 24 Yes (2-way) E5-2690@
2.6 GHz

Ifort
15.1.133

Impi
5.0.1.035
(InfiniBand)

Workshop on high perfromance computing

New features in KNL

• Up to 384 GB DDR4 main memory
• 16 GB High-bandwidth memory (MCDRAM)
• Self-booting Linux system (no attached host required)
• Binary compatible with x86

– Exception handling works just like x86 (-fpe0 works)

• Much lower cost to –fp-model precise
• 512-bit vectors: enable with –xMIC-AVX512
• Out of order instruction execution
• Bump in core count vs. KNC (68 or 72 vs. 61)
• Clock rate increase vs. KNC (1.4 or 1.5 GHz vs. 1.1)
• 1 MPI per core allowed (OMP not mandatory)

– 10 node 110 km NIM run only 20% slower in pure MPI mode

Workshop on high perfromance computing

Cubed-sphere grid (left) and
icosahedral-hexagonal grid (right)

Workshop on high perfromance computing

Graphic courtesy Peter Lauritzen (NCAR)

NIM, MPAS code structure

• Hybrid MPI/OMP

• Fortran, (k,i) data layout
– Horizontal index of neighbors (i) addressed via lookup

table

– Overhead of indirect addressing amortized by “k” on
the inside

• Shallow water parts of the dynamics easily
vectorize over “k”

• Transpose from (k,i) to (i,k) and back for physics
– Minimal impact on model runtime

Workshop on high perfromance computing

NIM performance on 2 generations of
Intel hardware

17.459

13.774

8.237

4.931

1.368
6.509

5.942

1.994

1.435

1.971

2.459

2.169

0

5

10

15

20

25

SNB KNC SNB+KNC KNL

30 km resolution, 80 nodes, runtime (sec)

Compute Communicate Barrier

Workshop on high perfromance computing

NIM thread scaling on KNL

Workshop on high perfromance computing

FV3 Overview

• Selected by NWS as next-generation dynamical core to
be used in forecast mode (~10 day forecasts)

• Non-hydrostatic capability required for high-resolution
runs (< 10 km)
– Hydrostatic assumption means force of gravity exactly

balances vertical pressure gradient force (dp/dz = -rho*g)

• Physical parameterizations from current forecast model
(GFS) have been enabled in FV3

• 2 horizontal resolutions provided to ESRL: c192 (~0.5
degree), c768 (~0.125 degree)

• 127 vertical levels

Workshop on high perfromance computing

FV3 code structure

• Hybrid MPI/OpenMP dynamical core
– Well-suited for many-core architectures

• ”Cubed sphere” means 6 separate ”faces”
– Must have at least 1 MPI rank per face
– Ability to run w/o MPI would be a welcome addition

• (i,j,k) data layout (Fortran ordering)
• Shallow water portions of code thread over “k” and

vectorize over “i”
• Vertical dependencies: Remapping portion of code threads

over “j” and vectorizes over “i”
• Special handling required for “edge” and “corner” points

Workshop on high perfromance computing

FV3 code structure (cont’d)

• Highly vectorized as indicated by compiler opt report
– Corner calculations excepted (moving ”k” inside would help)
– Turning off vectorization slowed the code down by ~2X

• MPI communication utilizes FMS “wrapping” infrastructure
– All messages are “packed” prior to sending, “unpacked” after

receiving
– 2-deep and sometimes 3-deep halos are exchanged

• On average, 17 OMP loops are executed each time step
– GPTL timers indicate threading overhead is not a problem, even

on KNL
– Many “j” and “i” loops nested inside: Pushing “k” inside will be

difficult

Workshop on high perfromance computing

Example MPI task layout (4x4) on a
single FV3 face (~0.5 degree)

Workshop on high perfromance computing

ESRL mods to FV3

• Thread-safe timing library (GPTL)

• Fused a few OMP loops

• Updated compiler flags for HSW

• Turn off manual thread pinning on KNC/KNL

Workshop on high perfromance computing

How threading overhead was
measured

ret = gptlstart_threadohd_outer (‘c_sw’)

!$OMP PARALLEL DO

do k=1,npz

ret = gptlstart_threadohd_inner (‘c_sw’)

call c_sw (. . .)

ret = gptlstop_threadohd_inner (‘c_sw’)

end do

ret = gptlstop_threadohd_outer (‘c_sw’)

• Each invocation, ”inner” timer notes time taken
by slowest thread for each “inner” call

• Each invocation, “outer” timer accumulates
difference between its c_sw and slowest “inner”
thread

• When timers are printed, overhead is the sum of
these differences

Workshop on high perfromance computing

FV3 Low resolution multi-node scaling

Workshop on high perfromance computing

FV3 High resolution multi-node scaling

Workshop on high perfromance computing

FV3 comm-time compared to run-time
(hi-res)

nodes

HSW comm
time (sec)

HSW run time
(sec)

KNL comm time
(sec)

KNL run time
(sec)

12 26.8 1053.7 26.3 523.9

24 16.9 529.5 16.1 260.5

48 11.1 267.5 10.6 137.4

Workshop on high perfromance computing

A note about thread pinning…

• As received from GFDL, FV3 code manually
pins threads to individual cores inside user
code. This was removed for KNL, and modified
for CPU

• On CPU, allowing threads to be assigned to a
range of cores incurred little to no penalty, as
long as they were not allowed to span sockets.

• On KNL (and KNC), threads are automatically
pinned to individual cores

Workshop on high perfromance computing

Proposed MPI task layout to address
load imbalance from edge/corner

points

Workshop on high perfromance computing

Summary

• FV3 is well vectorized, and scales well in OpenMP and MPI
– Corner and edge point calculations contribute some imbalance
– 17 OMP loops per time step add some load-induced imbalance but

little OpenMP overhead

• Cost of –fp-model precise flag (to guarantee bitwise identical
results) decreased dramatically on KNL

• Pure MPI (no OMP) is possible, and works well
• MCDRAM provides a significant performance benefit

– Cache and flat modes perform similarly when most or all memory fits
in MCDRAM

• Unlike KNC, hyperthreading provides little benefit
• KNL performance exceeds HSW, particularly at higher resolution
• Attempts to push “k” loop inside will involve significant code

restructuring

Workshop on high perfromance computing

Where Next?

• Tweaks to thread and task pinning?
• Adjust number of points owned by MPI tasks to

improve load imbalance caused by edge and
corner calculations

• Improve MPI performance—can packing be
eliminated in some cases?

• Enable FV3 to run without MPI (for testing)
• Can pushing “k” loop inside provide a benefit on

KNL (or at least no penalty)?
• Physics optimizations

Workshop on high perfromance computing

Backup slides

Workshop on high perfromance computing

NIM: Overlapping communication with
computation

0

5

10

15

20

25

SNB KNC SNB+KNC KNL

30 km resolution, 80 nodes, runtime (sec)

No overlap Overlap

Workshop on high perfromance computing

