Stochastic representations of model uncertainties in the IFS

Martin Leutbecher, Pirkka Ollinaho, Sarah-Jane Lock, Simon Lang, Peter Bechtold, Anton Beljaars, Alessio Bozzo, Richard Forbes, Thomas Haiden, Robin Hogan and Irina Sandu

ECMWF/WWRP workshop April 2016

M. Leutbecher et al.

Model uncertainty representations in the IFS

- Operational in medium/extended-range and seasonal ensembles (ENS, SEAS)
 - SPPT (Stochastically Perturbed Parametrisation Tendencies) with 3-scales
 - SKEB (Stochastic Kinetic Energy Backscatter)
- Operational in ensemble of data assimilations (EDA)
 - SPPT with 1-scale (fast & small-scale)

Model uncertainty representations in the IFS

- Operational in medium/extended-range and seasonal ensembles (ENS, SEAS)
 - SPPT (Stochastically Perturbed Parametrisation Tendencies) with 3-scales
 - SKEB (Stochastic Kinetic Energy Backscatter)
- Operational in ensemble of data assimilations (EDA)
 - SPPT with 1-scale (fast & small-scale)
- Research
 - modifications of SPPT (cf. talks by Weisheimer and Christensen)
 - Development of a new scheme "SPP": Stochastically Perturbed Parameterisations
 - ENS with SPP versus ENS with SPPT
 - EDA with SPP
 - EDA with 3-scale SPPT

Stochastic Kinetic Energy Backscatter (SKEB)

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\lambda, \phi, \sigma, t)$,
 - where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively

Stochastic Kinetic Energy Backscatter (SKEB)

- Rationale: A fraction of the dissipated energy is backscattered upscale and acts as streamfunction forcing for the resolved-scale flow (Shutts and Palmer 2004, Shutts 2005, Berner et al. 2009)
- Streamfunction forcing = $[bD]^{1/2} F(\lambda, \phi, \sigma, t)$, where b, D, F denote the backscatter ratio, the (smoothed) total dissipation rate and the 3-dim evolving pattern, respectively
- Total dissipation rate: sum of
 - "Numerical" dissipation: Loss of KE by numerical diffusion + interpolation in semi-Lagrangian advection; estimated from biharmonic diffusion
 - an estimate of the deep convective KE production
- Resolution upgrade (32 \rightarrow 19 km) in March 2016: Spectral viscosity approach for cubic octahedral grid is inconsist with biharmonic diffusion assumed by SKEB and used previously with the linear grid (\Rightarrow contribution from numerical dissipation deactivated, i.e. SKEB \rightarrow SCB \Rightarrow SKEB is less active)

Stochastically Perturbed Parameterization Tendencies (SPPT)

- Total physics tendencies P perturbed by $\Delta P = \mu r P$, with r a random pattern and μ a tapering profile (0 in BL and stratosphere, 1 in free troposphere)
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer, 1999)

Stochastically Perturbed Parameterization Tendencies (SPPT)

- Total physics tendencies P perturbed by $\Delta P = \mu r P$, with r a random pattern and μ a tapering profile (0 in BL and stratosphere, 1 in free troposphere)
- Improved version of the original SPPT scheme (stochastic physics, Buizza, Miller & Palmer, 1999)
- Random pattern r(lat, lon, t) uses AR-1 processes in spectral space and is "continuous" in space and time
- Multi-scale pattern with three components: $\tau = 6 \text{ h}$, 3 d, 30 d and L = 500 km, 1000 km, 2000 km with standard deviations of $\sigma = 0.52$, 0.18, 0.06, respectively
- Gaussian distribution (limited to range $\left[-1,1\right]$)
- Same pattern r for T, q, u, v
- see Tech Memo 598, Palmer et al. (2009) and Shutts et al (2011), ECMWF Newsletter 129

SPPT pattern

5

composed of 3 random fields

What happens without representation of model uncertainties?

Ensemble standard deviation

TL399/255, resolution change at D15, 20 members

6

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECMWF/WWRP workshop April 2016

What happens without representation of model uncertainties?

Probabilistic skill (I)

What happens without representation of model uncertainties? Probabilistic skill (II)

Proper two-moment score of Dawid and Sebastiani (1999) \equiv log-score of Gaussian distribution with the two moments given by ensemble mean and ensemble variance

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECMWF/WWRP workshop April 2016 8

Planned and potential upgrades of SPPT

- fix global integral of perturbed tendency to the value of the unperturbed tendency to address lack of conservation (Antje Weisheimer, Simon Lang and Jost von Hardenberg)
- independent patterns for different processes / groups of processes (iSPPT: Hannah Christensen and Sarah-Jane Lock)
- re-assessment of supersaturation limiter (Sarah-Jane Lock)

Towards process-level specification of uncertainties

Aim: Improve physical consistency of model uncertainty representation

- Flux perturbations at TOA and sfc that are consistent with tendency perturbation in atmospheric column
- Conservation of water
- No ad hoc tapering in BL and stratosphere
- Include multi-variate aspects of uncertainties

Towards process-level specification of uncertainties

Aim: Improve physical consistency of model uncertainty representation

- Embed stochasticity within IFS physics
- Local stochastic perturbations to parameters and variables with specified spatial and temporal correlations

- Flux perturbations at TOA and sfc that are consistent with tendency perturbation in atmospheric column
- Conservation of water
- No ad hoc tapering in BL and stratosphere
- Include multi-variate aspects of uncertainties
- Target uncertainties that matter
- Stochastic parameterisation converges to deterministic IFS physics in limit of vanishing variance

Stochastically Perturbed Parametrisations (SPP)

The distributions sampled by SPP

Development started with parameter perturbations that target the cloud-radiation interaction

The distributions sampled by SPP cloud and large-scale precipitation

turbulent diffusion and subgrid oro.

CECMWF

Correlation scales matter

Ensemble standard deviation and CRPS

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECMWF/WWRP workshop April 2016 13

Amplitude matters too

Ensemble standard deviation and CRPS

PPL0.5 has all standard deviations σ_j halved compared to PPL. The correlation scales are 2000 km and 72 h in both experiments. Ollinaho et al. (2016, submitted to QJ)

M. Leutbecher et al.

Intercomparison of SPP and SPPT

Ensemble stdev of 0–3 h temperature tendencies $(K[3h]^{-1})$

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS

Comparing ensembles of temperature tendencies

SPP versus SPPT (no initial perturbations)

- Stdev of 0-3 h tendency
- SPP induces larger (smaller) tendency perturbations in (above) BL than SPPT
- regions where tendencies are most uncertain become more similar with increasing lead time (bottom: corr stdev)
- 6 boreal winter cases; Unit (top panels): K/(3h)

Ollinaho et al. (2016, submitted to QJ)

CECMWF

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS

Comparing ensembles of temperature tendencies

SPP versus SPPT (no initial perturbations)

- Stdev of 21–24 h tendency
- SPP induces larger (smaller) tendency perturbations in (above) BL than SPPT
- regions where tendencies are most uncertain become more similar with increasing lead time (bottom: corr stdev)
- 6 boreal winter cases; Unit (top panels): K/(3h)

Ollinaho et al. (2016, submitted to QJ)

CECMWF

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECM

Change of ensemble stdev: 200 hPa zonal wind

SPP versus SPPT relative to initial perturbation only

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECMWF/WWRP workshop April 2016 17

Change of CRPS: 200 hPa zonal wind

SPP versus SPPT relative to initial perturbation only

Change of CRPS: 200 hPa zonal wind

SPP+SPPT1 and ... relative to initial perturbation only

Impact on model climate

Relative change of RMS error of annual mean fields with respect to unperturbed forecasts.

ERA-Interim (tropical winds) and satellite obs. are used as reference.

Model configuration: uncoupled TL255, 4 start dates, initial month omitted.

Summary

- The operational schemes SPPT (+SKEB) contribute significantly to the probabilistic skill in medium range and extended range
- A new stochastic scheme has been developed for representing model uncertainties at the process level in IFS: The SPP scheme provides a framework to build stochastic parameterisations that are guided by existing deterministic parameterisations
 - A first attempt to represent model uncertainties in the main physical processes in a physically consistent way.
 - Further extensions of SPP are envisaged and ideas are welcome
- Proximity to processes implies a scheme that is less parsimonious than SPPT.
- Further development could benefit from validating the ensemble for variables that are close to the processes.
- Initial operational implementation could consider a combination of SPPT and SPP

Current ECMWF ideas on future plans

For working group discussions

- Move towards consistent approach to represent model uncertainties in assimilations and forecasts at all lead times
- Process-oriented diagnostics of ensembles (e.g. radiative fluxes, precipitation, skin temperature)
- Ideas for extending scope of SPP:
 - thermodynamic coupling between surface and atmosphere
 - vertical mixing above boundary layer
 - atmospheric composition: trace gas sources/sinks
- How to evolve from current SKEB? Stochastic Convective Backscatter (SCB, Shutts 2015) and/or stochastic dynamical core

M. Leutbecher et al.

Current ECMWF ideas on future plans

For working group discussions

- Move towards consistent approach to represent model uncertainties in assimilations and forecasts at all lead times
- Process-oriented diagnostics of ensembles (e.g. radiative fluxes, precipitation, skin temperature)
- Ideas for extending scope of SPP:
 - thermodynamic coupling between surface and atmosphere
 - vertical mixing above boundary layer
 - atmospheric composition: trace gas sources/sinks
- How to evolve from current SKEB? Stochastic Convective Backscatter (SCB, Shutts 2015) and/or stochastic dynamical core

Vacancy VN16-13 at ECMWF for Scientist to work on specification of global surface characteristics for land, ocean, biosphere and cryosphere and model uncertainty, see http://www.ecmwf.int/en/about/jobs/jobs-ecmwf

extra slides ...

M. Leutbecher et al.

What happens without representation of model uncertainties?

Ensemble standard deviation

TCo255/159, resolution change at D15, 20 members

M. Leutbecher et al.

Stochastic representations of model uncertainties in the IFS ECMWF/WWRP workshop April 2016 25