

Impact of turbulence on wind turbine wakes

Antonia Englberger, Andreas Dörnbrack

DLR

October 2016

WIND TURBINE LESS WITH REALISTIC ATMOSPHERIC TURBULENCE CONDITIONS

Wind turbine simulations: open horizontal boundary conditions

\Rightarrow 1. Real-time input of atmospheric turbulence

- ightarrow One precursor simulation of the complete diurnal cycle
- \rightarrow Computationally very expensive

\Rightarrow 2. Parameterization of atmospheric turbulence

- \rightarrow Parameterisation of the background atmospheric state, valid for different regimes
- of atmospheric turbulence with one end state of a precursor simulation
- \rightarrow Effective and computationally efficient

1. Real-time input of atmospheric turbulence

Idealised atmospheric boundary layer (ABL) simulation

- geophysical flow solver EULAG
- $\Delta_x = \Delta_y = 5$ m (512 x 512 grid points)

-
$$L_z=2$$
 km; $\Delta_z=\begin{cases} 5 m & z \le 200 m \\ 10 m & 200 m < z \le 800 m \\ 20 m & z > 800 m \end{cases}$

- periodic horizontal boundary conditions
- Coriolis force
- initial wind: $u_0=10 \text{ m s}^{-1}$; $v_0=0 \text{ m s}^{-1}$; $w_0=0 \text{ m s}^{-1}$
- initial potential temperature: $\Theta_0 = \begin{cases} 300 \ K & z \le 1 \ km \\ 300 \ K + z \cdot 10 \ K \ km^{-1} & z > 1 \ km \end{cases}$
- sensible heat flux: $SHF = \begin{cases}
 -10 \ W \ m^{-2} + 150 \ W \ m^{-2} \ sin^2(\frac{\pi(t - t_{trans})}{2 \cdot \tau_{trans}}) & 4 \ h \le t < 20 \ h \\
 -10 \ W \ m^{-2} & t < 4 \ h \ \parallel t \ge 20 \ h
 \end{cases}$

 t_{trans} =4 h: time of transition since start of simulation; τ_{trans} =8 h: transition time scale

- 30 h of simulation (one full diurnal cycle)

1. Real-time input of atmospheric turbulence

 Top tip
 = 150 m ----

 Hub Height
 = 100 m ----

 Bottom tip
 = 50 m -----

$$\begin{split} l_{i,j,k} &= \frac{\sigma u_{i,j,k}}{< u_{i,j,z_h} > t} \,, \\ &\text{with } \sigma u_{i,j,k} = \sqrt{< u_{i,j,k}'^2 > t} \\ &\text{and } u_{i,j,k}' = u_{i,j,k} - < u_{i,j,k} > t \end{split}$$

1. Real-time input of atmospheric turbulence

 Top tip
 = 150 m ----

 Hub Height
 = 100 m ----

 Bottom tip
 = 50 m -----

$$\begin{split} l_{i,j,k} &= \frac{\sigma u_{i,j,k}}{< u_{i,j,z_h} > t} \,, \\ &\text{with } \sigma u_{i,j,k} = \sqrt{< u_{i,j,k}'^2 > t} \\ &\text{and } u_{i,j,k}' = u_{i,j,k} - < u_{i,j,k} > t \end{split}$$

Wind turbine (WT) simulation

- geophysical flow solver EULAG
- $\Delta_x = \Delta_y = 5$ m (512 x 64 grid points)
- L_z =420 m; Δ_z = $\begin{cases} 5 \ m & z \le 200 \ m \\ 10 \ m & z > 200 \ m \end{cases}$
- open horizontal boundary conditions
- rotor diameter D = 100 m; hub height $z_h = 100$ m; nacelle

$$-\frac{d\mathbf{v}}{dt} = -G\mathbf{\nabla}\left(\frac{\rho'}{\rho_0}\right) + \mathbf{g}\frac{\Theta'}{\Theta_0} + \mathbf{\mathcal{V}} + \mathbf{M} + \frac{\mathbf{F}_{WT}}{\rho_0}$$

-
$$\mathbf{F}_{WT}|_{x_0,y,z} = \mathbf{F}_{x}|_{x_0,y,z} + \mathbf{F}_{\Theta}|_{x_0,y,z}$$

$$-|F_x||_{x_0,y,z} = \frac{1}{2}\rho_0 \frac{Bc}{2\pi r_{x_0,y,z}} (c_L \cos \Phi + c_D \sin \Phi) A_{x_0,y,z} \frac{u_{x_\infty,y,z}^2(1-a)^2}{\sin^2 \Phi}$$

$$- |F_{\Theta}||_{x_{0},y,z} = \frac{1}{2} \rho_{0} \frac{Bc}{2\pi r_{x_{0},y,z}} (c_{L} \sin \Phi - c_{D} \cos \Phi) A_{x_{0},y,z} \frac{u_{x_{\infty},y,z}(1-a)\Omega r_{x_{0},y,z}(1+a')}{\sin \Phi \cos \Phi}$$

- 1 h of simulation for different phases of the diurnal cycle (CBL, ET, SBL, MT)

Interface between ABL simulation and WT simulation

- initial conditions in WT simulation $(u_{i,j,k}, v_{i,j,k}, w_{i,j,k}, \Theta_{i,j,k})$ are set to the corresponding atmospheric state of the idealised ABL simulation
- horizontal averages of initial conditions (u_0 , v_0 , w_0 , Θ_0) are used as background condition in WT simulation
- two dimensional *y-z* slices of *u*, *v*, *w*, Θ of the ABL simulation contribute as real-time inflow at each timestep to $u_{1,j,k}$, $v_{1,j,k}$, $w_{1,j,k}$, $\Theta_{1,j,k}$ at *i* = 1

1. Real-time input of atmospheric turbulence

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmhokz-Gemeinschaft

Slide 7 of 2 Impact of turbulence on wind turbine wakes - Antonia Englberger, Andreas Dörnbrack - October 2011 ・ ロト・何から、シスクロー 1. Real-time input of atmospheric turbulence

marker	ABL	data	
+	NBL	LES (Wu and Porté-Agel (2011))	
	NBL	LES (Wu and Porté-Agel (2012))	
•	NBL	LES (Wu and Porté-Agel (2012))	
×	NBL	RANS (Gomes et al. (2014))	
•	SBL	lidar (Aitken et al. (2014))	
*	SBL	WRF-LES (Aitken et al. (2014))	
	CBL	lidar (Mirocha et al. (2014))	
A	CBL	WRF-LES (Mirocha et al. (2014))	
	CBL	WRF-LES (Mirocha et al. (2014))	
$z_0 = 1 \cdot 10^{-5} \text{ m}, z_0 = 1 \cdot 10^{-1} \text{ m}$ $sHF = 20 \text{ W m}^{-2}, sHF = 100 \text{ W m}^{-2}$			

$$VR_{i,j,k} = \frac{\langle u_{i,j,k} \rangle_t}{\langle u_{1,j,k} \rangle_t}$$

Shide & of 20 Impact of turbulence: on wind turbine wakes - Antonia Englberger, Andreas Dörnbrack - Odober 2016 ・ロト・(書)・〇〇〇

Methodology to **maintain the turbulence of the background flow** for WT simulations with open horizontal boundary conditions without the permanent import of turbulence data from a precursor simulation by applying the **spectral energy distribution** of an NBL on WT simulations

Empirical factor α in new method controls the energy content of the background turbulence and makes it appropriate for different regimes (CBL, ET, SBL, MT)

Precursor NBL simulation

- Forcing $-u_*^2/H$ with the friction velocity $u_* = 0.4$ m s⁻¹ and the height of the computational domain H applied on the u component of

$$\frac{d\mathbf{v}}{dt} = -G\boldsymbol{\nabla}\left(\frac{p'}{\rho_0}\right) + \mathbf{g}\frac{\Theta'}{\Theta_0} + \boldsymbol{\mathcal{V}} + \mathbf{M}$$

- same number of grid points as in the WT simulation
- periodic horizontal boundary conditions
- no Coriolis force
- $u_0=0 \text{ m s}^{-1}$; $v_0=0 \text{ m s}^{-1}$; $w_0=0 \text{ m s}^{-1}$
- cdrag=0.1 m
- obstacle for a few timesteps
 - ightarrow additional velocity gradients in neutral flow provide seed for turbulence to develop
 - ightarrow equilibrium state of NBL precursor simulation is attained more rapidly

Methodology

Perturbation velocities $\mathbf{u}_{p}^{*}|_{i,i,k}^{\xi}$, which are extracted from a precursor NBL simulation via

$$\mathbf{u}_{\rho}^{*}|_{i,j,k}^{\xi} = \alpha \cdot \beta \cdot \left(\underbrace{\mathbf{u}_{\rho}|_{i^{*},j,k}}_{ll} - \underbrace{\frac{1}{n \cdot m} \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbf{u}_{\rho}|_{i,j,k}}_{l}}_{l}\right),$$

I: height-averaged mean value of u, v and w

II: streamwise direction shift by one grid point every timestep

 β : random number $\beta \in [-0.5, 0.5]$

 α : perturbation amplitude

contribute at every timestep to the velocity field of the WT simulation $\mathbf{u}|_{i,i,k}^{\xi}$

This methodology offers several possibilities for the numerical scheme:

- 1. Open inflow and outflow Neumann boundary conditions.
- 2. The perturbation data from the precursor simulation are imported only once and are stored in three 3 D fields (u, v, w) during the WT simulation.
- 3. The method is computationally very efficient, as it allows to reapply the background turbulence of one precursor simulation to a variety of WT simulations.
- 4. The response of a wind turbine to different intensities of the background turbulence can be easily investigated by changing the parameter α .

Wind turbine simulation

 \Rightarrow Same WT setup as in previous simulations with one difference.

Difference:

No real-time inflow at each timestep. Instead, in the new methodology, the logarithmic wind profile $u_{x_{\infty},y,z} = \frac{u_*}{\kappa} \ln(\frac{z}{z_0})$ with $u_* = 0.45$ m s⁻¹ and $z_0 = 0.1$ m is superimposed by the velocity fluctuations of u, v and w resulting from the precursor NBL simulation.

2. Parameterization of atmospheric turbulence

marker	ABL	data	
+	NBL	LES (Wu and Porté-Agel (2011))	
	NBL	LES (Wu and Porté-Agel (2012))	
•	NBL	LES (Wu and Porté-Agel (2012))	
×	NBL	RANS (Gomes et al. (2014))	
•	SBL	lidar (Aitken et al. (2014))	
*	SBL	WRF-LES (Aitken et al. (2014))	
A	CBL	lidar (Mirocha et al. (2014))	
A	CBL	WRF-LES (Mirocha et al. (2014))	
	CBL	WRF-LES (Mirocha et al. (2014))	
$z_0 = 1 \cdot 10^{-5} \text{ m}; z_0 = 1 \cdot 10^{-1} \text{ m}$ $A SHF = 20 \text{ W m}^{-2}; A SHF = 100 \text{ W m}^{-2}$			

2. Parameterization of atmospheric turbulence

⇒ Streamwise profiles of the velocity ratio are in rather good agreement with other measurements and numerical simulation results and also with the results of the diurnal cycle WT simulations for α =1, α =5 and α =10.

 \Rightarrow Streamwise profiles of the turbulent intensity are only comparable for α =1. Simulations with α =5 and α =10 result in too large *I* values.

Possible improvements:

- $\alpha_{i,j,k}$ instead of one lpha value
- $\alpha_{i,j,k}$ could dependent on:
 - $\Theta, \ \frac{\partial u}{\partial z}, \ \mathsf{TKE}_{i,j,k} \ \dots$

Thank you for your attention!

Englberger A. and Dörnbrack A.: Impact of atmospheric boundary-layer turbulence on wind-turbine wakes: A numerical modelling study, Boundary-Layer Meteorology, in press, 2016

Englberger A. and Dörnbrack A.: Impact of the diurnal cycle of the atmospheric boundary layer on wind turbine wakes: A numerical modelling study, Atmospheric Chemistry and Physics Discussions, published online, 2016

