Numerical simulation of stably stratified atmospheric flow around isolated complex-shaped tall building

Michał Korycki¹ Lech Łobocki² Andrzej Wyszogrodzki³

¹National Centre for Nuclear Research, Otwock, Poland
²Warsaw University of Technology, Warsaw, Poland
³Institute of Meteorology and Water Management, Warsaw, Poland

October 6, 2016

The current state of knowledge

- Flow around buildings is receiving more attention over time
- Numerous wind tunnel studies
- Increasing popularity of CFD
- Most simulations were focused on idealized flow around simplified buildings
- Very often steady state adiabatic flow
- Influence of stability is still poorly investigated but it is attracting more and more attention

The significance of stability

- Mechanically generated turbulence reduces the role of buoyancy effects
- Buoyancy may affect the flow itself

Flow structures Hussein & Martinuzzi 1996

Computational domain

M. Korycki, L. Łobocki, A. Wyszogrodzki

Simulation of stably stratified flow around isolated building

Model setup

- EULAG code
- Cartiesian coordinate frame with its X axis oriented parallel to the symmetry plane of building
- Wind direction along X axis
- Two computational domains: one for high Froude number 256^3 , and second for low Froude numbers $256 \times 256 \times 512$
- $4 \times 4 \times 2m$ resolution
- Constant temperature gradients
- Wind speed at lowest model level was set to 3m/s with $0.002s^{-1}$ vertical gradient
- Boussinesq approximation
- Immersed Boundary method to represent the building

Case $\#$	S [1/m]	$\partial \bar{\Theta} / \partial z [K/m]$	N_{BV} $[1/s]$	Fr	λ_{x} [m]
1	$1\cdot 10^{-6}$	$2.88 \cdot 10^{-4}$	0.0031	5	6015
2	$1\cdot 10^{-5}$	$2.88 \cdot 10^{-3}$	0.0099	1.6	1902
3	$1.5 \cdot 10^{-5}$	$4.32 \cdot 10^{-3}$	0.0121	1.3	1553
4	$2\cdot 10^{-5}$	$5.76 \cdot 10^{-3}$	0.0140	1.13	1345
5	$2.5 \cdot 10^{-5}$	$7.2 \cdot 10^{-3}$	0.0157	1.01	1203
6	$3\cdot10^{-5}$	$8.64 \cdot 10^{-3}$	0.0172	0.92	1098
7	$5\cdot10^{-5}$	$1.44 \cdot 10^{-2}$	0.0221	0.71	851
8	$7.5 \cdot 10^{-5}$	$2.16 \cdot 10^{-2}$	0.0271	0.58	695
9	$1 \cdot 10^{-4}$	$2.88 \cdot 10^{-2}$	0.0313	0.50	602
10	$1.25\cdot10^{-4}$	$3.6 \cdot 10^{-2}$	0.0350	0.45	538
11	$1.5 \cdot 10^{-4}$	$4.32 \cdot 10^{-2}$	0.0383	0.41	491
12	$1.75\cdot 10^{-4}$	$5.04 \cdot 10^{-2}$	0.0414	0.38	455
13	$2\cdot 10^{-4}$	$5.76 \cdot 10^{-2}$	0.0443	0.36	425

Boundary conditions

- Outflow boundaries in the lateral and streamwise direction were open
- Free-slip boundary condition at the ground
- Impermeable rigid boundary with a wave absorber at the top
- No-slip and partial-slip were also tested for comaprison

Neutral stratification

"Our way" vorticity components

M. Korycki, L. Łobocki, A. Wyszogrodzki

Simulation of stably stratified flow around isolated building

Stable stratification, Fr = 0.92

"Our way" vorticity component

Simulation of stably stratified flow around isolated building

M. Korycki, L. Łobocki, A. Wyszogrodzki

Neutral stratification, YZ cross-section

"Our way" vorticity components at x = -110m, x = -30m, x = 360m, x = 506m

Stable stratification, YZ cross-section

"Our way" vorticity components at x = -110m, x = -30m, x = 360m, x = 506m

Complex-shaped building Simple-shaped building

XY cross-section on z = 100m

Vertical vorticity component

Complex-shaped building Simple-shaped building

XZ cross-section Vertical velocity

Complex-shaped building Simple-shaped building

XZ cross-section Potential temperature departure

Complex-shaped building Simple-shaped building

Isentropic surfaces Respectively $\Theta = \Theta_e$ (z = 60m), (z = 100m), (z = 140m)

M. Korycki, L. Łobocki, A. Wyszogrodzki

Simulation of stably stratified flow around isolated building

Complex-shaped building Simple-shaped building

Vertical velocities at isentropic surfaces at $\Theta = \Theta_e$ (z = 100m)

M. Korycki, L. Łobocki, A. Wyszogrodzki Simulation of stably stratified flow around isolated building

Complex-shaped building Simple-shaped building

Isentropic surface's elevations and vertical velocities at $\Theta = \Theta_e$ (*z* = 100*m*)

M. Korycki, L. Łobocki, A. Wyszogrodzki

Simulation of stably stratified flow around isolated building

Complex-shaped building Simple-shaped building

Streamwise X vorticity component z = 100m

Complex-shaped building Simple-shaped building

Streamwise X vorticity component at x = 576m

M. Korycki, L. Łobocki, A. Wyszogrodzki Simulation of stably stratified flow around isolated building

Complex-shaped building Simple-shaped building

Cuboidal building, Fr = 0.36Elevation of isentropic surface and vertical velocity at $\Theta = \Theta_e$ (z = 100)

Complex-shaped building Simple-shaped building

Cuboidal building, Fr = 0.36Vertical velocity at $\Theta = \Theta_e$ (z = 100)

Complex-shaped building Simple-shaped building

Streamwise X vorticity component at z = 100m

Complex-shaped building Simple-shaped building

Streamwise X vorticity component at x = 576m

Conclusions

- Flow structures at low Froude numbers are more complex
- There is a close link between V-shaped waveforms filling the wake and vortices spreading out from the centerline of the wake
- With Froude number decreasing, gravity waves become shorter and more vortices appear.
- Wave motion becomes apparent when Fr < 1
- Similar flow structures can be found in cases with simplified buildings