Turbulent transport of the energy in the entrainment interface layer

Marta K. Kopeć¹, S. P. Malinowski¹, Z. P. Piotrowski²

¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland

²Institute of Meteorology and Water Management, National Research Institute, Warsaw, Poland

05/10/2016, Reading

Setup

Results

Summary

Setup

Results

Summary

- POST (Physics of Stratocumulus Top) aircraft field study off the California Coast in 2008.
- Single aircraft investigating unbroken stratocumulus clouds (Sc) near cloud top
- Aircraft instrumented with a full suite of probes for measuring state parameters of the atmosphere, drop spectra, CCN, irradiances, wind velocity and turbulence

Flight TO13

- date: 09-08-2008
- evening flight
- weak inversion
- small surface fluxes:
 5 W/m² (sensible heat) and
 10 W/m² (latent heat)
- no bouayancy reversal due to entrainment/mixing

Setup

Results

Summary

- EULAG model anelastic equations
- domain size: 4×4×1.2 km
- ▶ grid: 20×20×2.5 m
- time step: 0.3 s
- simulated time: 4 h
- 4 simulations

- domain size: 4×4×1.2 km
- ▶ grid: 20×20×2.5 m
- time step: 0.3 s
- simulated time: 4 h
- 4 simulations

"ref" - referential simulation (without wind shear and radiative cooling)

LES initial profiles

potential temperature, velocity components and water vapour mixing ratio

LES radiative cooling

$$F_{rad} = \begin{cases} F_0 e^{-\int_z^{\infty} kq_c dz} & z < z_i \\ F_0 e^{-\int_z^{\infty} kq_c dz} + C(z - z_i)^{1/2} & z \ge z_i - z_i \\ \end{cases}$$

Setup

Results

Summary

Turbulent kinetic energy (TKE)

Turbulent kinetic energy (TKE)

TKE is larger in cases with radiative cooling.

Turbulent kinetic energy (TKE)

- TKE is larger in cases with radiative cooling.
- TKE profile has two local maximum near cloud top in wind shear cases.

$\frac{\partial \overline{e}}{\partial t} + \overline{w} \frac{\partial \overline{e}}{\partial z} = \frac{g}{\overline{\theta_v}} \overline{w' \theta_v'} - \left(\overline{u' w'} \frac{\partial \overline{u}}{\partial z} + \overline{v' w'} \frac{\partial \overline{v}}{\partial z} \right) - \frac{\partial \overline{w' e}}{\partial z} + -\frac{1}{\overline{\rho}} \frac{\partial \overline{w' p'}}{\partial z} - \epsilon.$

tendency $\begin{pmatrix} \\ \frac{\partial \overline{e}}{\partial t} + \overline{w} \frac{\partial \overline{e}}{\partial z} = \frac{g}{\overline{\theta_v}} \overline{w' \theta'_v} - \left(\overline{u' w'} \frac{\partial \overline{u}}{\partial z} + \overline{v' w'} \frac{\partial \overline{v}}{\partial z}\right) - \frac{\partial \overline{w' e}}{\partial z} + -\frac{1}{\overline{\rho}} \frac{\partial \overline{w' p'}}{\partial z} - \epsilon.$

NIVERSITY

TKE budget - buoyant and shear production of WARSAW

TKE budget - buoyant and shear production of WARSAW

Radiative cooling prevents decoupling.

TKE budget - buoyant and shear production of warsaw

Richardson number

Flux Richardson number (dots)

$$R_f = \frac{\frac{\underline{g}}{\theta_v} \overline{w' \theta_v}}{\overline{u' w'} \frac{\partial u}{\partial z} + \overline{v' w'} \frac{\partial \overline{v}}{\partial z}}$$

Gradient Richardson number (grey solid lines)

$$Ri = \frac{\frac{g}{\theta_v} \frac{\partial \overline{\theta_v}}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}$$

$$\frac{\partial \overline{e}}{\partial t} + \overline{w} \frac{\partial \overline{e}}{\partial z} = \frac{g}{\overline{\theta_v}} \overline{w' \theta'_v} - \left(\overline{u' w'} \frac{\partial \overline{u}}{\partial z} + \overline{v' w'} \frac{\partial \overline{v}}{\partial z} \right) - \frac{\partial \overline{w' e}}{\partial z} + -\frac{1}{\overline{\rho}} \frac{\partial \overline{w' p'}}{\partial z} - \epsilon.$$

turbulent transport
pressure correlation

TKE budget - turbulent transport and pressure correlation

TKE budget - turbulent transport and pressure correlation

TKE - vertical transport

TKE - vertical transport

Stronger vertical transport of TKE in radiative cooling cases.

TKE - vertical transport

Stronger vertical transport of TKE in radiative cooling cases.

• Upward transport of TKE ends \sim 50 *m* below cloud top.

Comparison with measurements

Comparison with measurements

In simulation TISL was much more wavier.

Comparison with measurements

			TKE dissipation		Corrsin
		Thickness	rate	Shear	scale
		[m]	$[m^2 s^{-3} \cdot 10^{-3}]$	$[s^{-1}]$	[m]
TISL	m	14.3 ± 14.3	0.32 ± 0.92	0.11 ± 0.06	0.59 ± 0.45
	SHRC	19.7 ± 27.7	5.30 ± 0.33	0.070 ± 0.003	3.62 ± 0.06
CTMSL	. m	74.2 ± 35.5	0.85 ± 0.45	0.05 ± 0.02	3.60 ± 1.72
	SHRC	54.3 ± 47.0	1.22 ± 1.22	0.03 ± 0.01	4.50 ± 0.01

- In simulation TISL was much more wavier.
- Turbulence in both layers is anisotropic.

			TKE dissipation		Corrsin
		Thickness	rate	Shear	scale
		[m]	$[m^2 s^{-3} \cdot 10^{-3}]$	$[s^{-1}]$	[m]
TISL	m	14.3 ± 14.3	0.32 ± 0.92	0.11 ± 0.06	0.59 ± 0.45
	SHRC	19.7 ± 27.7	5.30 ± 0.33	0.070 ± 0.003	3.62 ± 0.06
CTMSL	m	74.2 ± 35.5	0.85 ± 0.45	0.05 ± 0.02	3.60 ± 1.72
	SHRC	54.3 ± 47.0	1.22 ± 1.22	0.03 ± 0.01	4.50 ± 0.01

- In simulation TISL was much more wavier.
- Turbulence in both layers is anisotropic.
- Corsin scale in TISL in simulation was much larger than in the measurements, in CTMSL was comparable.

Comaprison with measurements

 TKE production by shear near cloud top has similar shape in measurements and in SHRC simulation.

Setup

Results

Summary

- Two adjacent to cloud top layers were found (TISL and CTMSL).
- Both layers are turbulent.
- Turbulence in both layers is anisotropic.
- TKE transport in cloud top region is downward.
- TKE production by shear near cloud top has similar shape in measurements and in SHRC simulation.

Thank you for your attention.