Spectral deferred corrections with fast-wave slow-wave splitting

ECMWF Workshop on numerical and computational methods for simulation of all-scale geophysical flows

Daniel Ruprecht¹, Robert Speck²

¹School of Mechanical Engineering, Faculty of Engineering, University of Leeds, UK

²Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH, Germany

4 October 2016

Physically insignificant fast waves

https://www.youtube.com/watch?v=ielLUnkdD90

Image: NOAA

Figure: "Ten years of weather in 3 minutes".

Acoustic waves have essentially no impact on larger scale atmospheric dynamics but severely restrict the time step:

e.g. 2000 m grid resolution divided by 300 m s $^{-1}pprox \Delta t \leq 6.7$ s

How to cope?

- Change the model: anelastic or pseudo-incompressible equations: remove acoustic waves from the system
- Use explicit integration with sub-stepping, e.g. RK-3 for advection and forward-backward Euler for acoustic terms
- Or: go IMEX. Integrate fast terms implicitly and slow terms explicitly.
 - Higher order methods can be difficult to derive, many order conditions!
 - Increasing order can reduce stability

...wouldn't it be nice to have an *easy* way to construct an IMEX integrator?

Collocation

Figure: A time-step $[T_n, T_{n+1}]$ with M = 9 Gauss-Lobatto collocation nodes t_j .

Consider Picard formulation of IVP

$$u(T_{n+1}) = u(T_n) + \int_{T_n}^{T_{n+1}} f(\tau, u(\tau)) d\tau$$

Approximation of integral by quadrature leads to collocation problem

$$\mathbf{U} = \mathbf{U}_0 + \Delta t \mathbf{QF}(\mathbf{U}), \ \mathbf{U} = (u_1, \dots, u_M)^{\mathrm{T}} \in \mathbb{R}^{NM imes NM}$$

with $u_j \approx u(t_j)$ approximations at the quadrature nodes

Collocation methods are a subclass of implicit Runge Kutta methods¹

¹Hairer, Nørsett, and Wanner 1993, Theorem 7.7.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 3 / 15

Spectral deferred corrections (SDC)²

Figure: Composite rectangular rule Q_{Δ} (red) as "preconditioner" for collocation rule Q (blue)

▶ SDC can be considered as a preconditioned Richardson iteration

$$\mathbf{U}^{k+1} = \mathbf{U}^{k} + (\mathbf{I} - \Delta t \mathbf{Q}_{\Delta} \mathbf{F})^{-1} \left[\mathbf{U}_{0} - (\mathbf{I} - \Delta t \mathbf{Q} \mathbf{F}) \mathbf{U}^{k} \right], \quad \mathbf{Q}_{\Delta} \approx \mathbf{Q}, \quad \mathbf{U} \in \mathbb{R}^{NM}$$

with $\mathbf{U}^k = (\mathbf{u}_1, \dots, \mathbf{u}_M)^t$. • Or, in "node-to-node" form,

$$u_{m+1}^{k+1} = u_m^{k+1} + \Delta t_m f(u_{m+1}^{k+1}) - \Delta t_m f(u_{m+1}^k) + \sum_{j=1}^M s_{m,j} f(u_j^k)$$

so that one iteration step $k
ightarrow k+1 \Leftrightarrow$ one "sweep" with implicit Euler

²Dutt, Greengard, and Rokhlin 2000, BIT Numerical Mathematics.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 4 / 15

SDC with fast-wave slow-wave splitting

For $f(y) = f_f(y) + f_s(y)$, instead of backward Euler

$$u_{m+1}^{k+1} = u_m^{k+1} + \Delta t_m f(u_{m+1}^{k+1}) - \Delta t_m f(u_{m+1}^k) + \sum_{j=1}^M s_{m,j} f(u_j^k),$$

can use IMEX as base method ("preconditioner") in SDC³

$$\boldsymbol{u}_{m+1}^{k+1} = \boldsymbol{u}_m^{k+1} + \Delta t_m \left[f_{f}(\boldsymbol{u}_{m+1}^{k+1}) + f_{s}(\boldsymbol{u}_m^{k+1}) + f_{f}(\boldsymbol{u}_{m+1}^{k}) + f_{s}(\boldsymbol{u}_m^{k}) \right] + \sum_{j=1}^{M} s_{m,j} f(\boldsymbol{u}_j^{k})$$

- In previous works, stiff/fast term from diffusion or chemical reaction⁴
- ▶ But: what about a fast waves, e.g. acoustic waves? → SDC with fast-wave slow-wave splitting ("fwsw-sdc")⁵

³Minion 2003, Communications in Mathematical Sciences.

⁴Layton and Minion 2004, Journal of Computational Physics.

⁵Ruprecht and Speck 2016, SIAM Journal on Scientific Computing.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 5 / 15

Two views on convergence of SDC

Theorem: SDC as iterative solver

For $y' = f(y) = \lambda y$ and $|\lambda| \Delta t < 1$, the *error propagation matrix* \mathbf{E}_{sdc} of the SDC iteration satisfies

$$\left\| {{f E}_{{
m{sdc}}}}
ight\|_\infty \le rac{{\left({1 + {\Lambda _n}}
ight)\Delta t\left| \lambda
ight|}}{{1 - \Delta t\left| \lambda
ight|}} = {\cal O}(\Delta t) \; {
m{as}} \; \Delta t o 0$$

where Λ_n is the Lebesgue constant for the collocation nodes $(\tau_m)_{m=1,...,M}$.

Theorem: SDC to generate methods of fixed high order

The *local truncation error* of SDC based on a quadrature rule with order p with a fixed number of K iterations is

$$\left|u(T_{n+1})-u_{n+1}^{K}
ight|=\mathcal{O}(\Delta t^{\min\{K+1,p+1\}}) ext{ as } \Delta t
ightarrow 0.$$

Order of convergence

Figure: Estimated error constants of SDC and IMEX Runge-Kutta.

Acoustic-advection equations:

 $u_t + Uu_x + c_s p_x = 0$ $p_t + Up_x + c_s u_x = 0$

with $u(x, 0) = \sin(2\pi x) + \sin(10\pi x)$.

Two views on SDC

(b) Relative error versus iteration k

Figure: Convergence of SDC in Δt (left) and k (right) for $u'(t) = i\lambda_{fast}u(t) + i\lambda_{slow}u(t)$. Can view SDC as...¹

- framework to generate method of fixed order
- iterative solver for collocation problem

¹Code available from https://github.com/Parallel-in-Time/pySDC

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 8 / 15

Stability of FWSW-SDC

Stability of SDC with fast-wave slow-wave splitting for test problem

$$u'(t) = \underbrace{i\lambda_{\mathsf{fast}} u(t)}_{implicit} + \underbrace{i\lambda_{\mathsf{slow}} u(t)}_{explicit}, \quad u(0) = 1, \quad \lambda_{\mathsf{fast}}, \lambda_{\mathsf{slow}} \in \mathbb{R}.$$

• Choice of nodes critical to get stability for $\Delta t \lambda_{fast} \gg 1$.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 9 / 15

Dispersion relation

Figure: Discrete dispersion relation for SDC, DIRK-RK and IMEX-RK.

 \blacktriangleright Connection between frequency ω and wave number κ in semi-discrete acoustic-advection problem

$$u_t + Uu_x + c_s p_x = 0$$
$$p_t + Up_x + c_s u_x = 0$$

• Continuous dispersion relation $\omega = (U \pm c_s) \kappa$.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 10 / 15

Multi-scale initial data⁶

Figure: Multi-scale initial data (left). Pressure at T = 3 for four different methods (right).

Acoustic-advection equations:

$$u_t + Uu_x + c_s p_x = 0$$
$$p_t + Up_x + c_s u_x = 0$$

with multi-scale initial data.

⁶Vater, Klein, and Knio 2011, Acta Geophysica.

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 11 / 15

Compressible two-dimensional linear Boussinesq equations

Figure: Gravity wave propagating in a channel.

Equations:

- $u_t + Uu_x + c_s p_x = 0$ $w_t + Uw_x + c_s p_z = b$
- $b_t + \frac{Ub_x}{N} + \frac{N^2w}{W} = 0$

 $p_t + Up_x + c_s \left(u_x + w_z \right) = 0$

- Count total number of GMRES iterations in implicit part
- IMEX-RK and FWSW-SDC solve red terms implicitly
- DIRK solves everything implicitly

D. Ruprecht: Spectral deferred corrections with fast-wave slow-wave splitting - 12 / 15

GMRES iterations

Third-order	$\Delta t = 30 \mathrm{s}$			$\Delta t = 6 \mathrm{s}$		
	DIRK	IMEX	SDC	DIRK	IMEX	SDC
# implicit solves	200		900	1000	2000	4500
# GMRES iterations	46,702		25,819	28,863	13,782	25,051
avg. it. per call	233.5		28.7	28.9	6.9	5.6
est. error	1.8e-1	unstable	1.1e-1	9.6e-2	1.7e-2	1.5e-2
Fourth-order	$\Delta t = 30{ m s}$			$\Delta t = 6 \mathrm{s}$		
	DIRK	IMEX	SDC	DIRK	IMEX	SDC
# implicit solves	300	500	1200	1500	2500	6000
# GMRES iterations	100,651	38,092	31,105	66,136	24,068	32,696
avg. it. per call	335.5	76.2	25.9	44.1	9.6	5.4
est. error	1.5e-1	1.3e-1	9.9e-2	9.4e-2	4.2e-3	2.9e-3
Fifth-order	$\Delta t = 30 \mathrm{s}$			$\Delta t = 6 \mathrm{s}$		
	DIRK	IMEX	SDC	DIRK	IMEX	SDC
# implicit solves	500		1500	2500	3500	7500
# GMRES iterations	38,334		34,732	24,592	24,649	32,724
avg. it. per call	76.7		23.2	9.8	7.0	4.4
est. error	9.6e-2	unstable	9.7e-2	3.4e-3	2.7e-3	2.6e-3

FWSW-SDC – Summary

- Spectral deferred corrections are an easy way to generate high order time integration schemes
- Can use as framework with different integrators as base method: Boris, IMEX Euler, ...
- FWSW-SDC produces high order methods with fast-wave slow-wave splitting ... it has favourable properties and is less expensive than you might think!

► For more information please see Daniel Ruprecht and Robert Speck (2016). "Spectral Deferred Corrections with Fast-wave Slow-wave Splitting". In: SIAM Journal on Scientific Computing 38.4, A2535-A2557. DOI: 10.1137/16M1060078. URL: http://dx.doi.org/10.1137/16M1060078

The PinT Community

To learn more about parallel-in-time integration, check the new website

www.parallelintime.org

and/or come to one of the PinT Workshops, e.g.

5th Workshop on Parallel-in-Time Integration

- Nov 27 Dec 2, 2016
- Banff International Research Station (BIRS), Calgary (CA)
- ▶ by M. Emmett, M. Gander, R. Haynes, R. Krause, M. Minion

There is also a new mailing list, join by writing to

parallelintime+subscribe@googlegroups.com

No Google account required!