# **Sub-seasonal prediction at ECMWF:**

present, past (recent and less recent) and future

### Franco Molteni, Frederic Vitart,

## Simon Lang, Antje Weisheimer, Sarah Keeley

ECMWF, Reading, U.K.

With contributions from :

• Martin Leutbecher, Richard Forbes, Elias Holm, Nils Wedi

#### The ECMWF ensemble prediction system for the medium and sub-seasonal range



### **Evolution of the ECMWF sub-seasonal ensemble forecasts**

| Mar                              | 2002 Oct2              | 004 Fe        | b2006 M    | ar2008                    | Jan2010                   | Nov2                           | 011 No                      | v2013         | Мау                 | /2015                                        |  |
|----------------------------------|------------------------|---------------|------------|---------------------------|---------------------------|--------------------------------|-----------------------------|---------------|---------------------|----------------------------------------------|--|
| Frequency                        | Every 2<br>weeks       |               | ice a week | e a week                  |                           |                                | Twice a week                |               |                     |                                              |  |
| Horizontal resolution            | T159 day 0-32          |               |            | T319 da<br>T255<br>10-3   | y 0-10<br>day<br>32       | T639 day 0-10<br>T319 day 10-3 |                             |               |                     | T639<br>day 0-10<br>T319<br><b>day 10-46</b> |  |
| Vertical resolution              | 40 lev<br>Top at 1     | vels<br>0 hPa |            | 62 levels<br>Top at 5 hPa |                           |                                | 91 levels<br>Top at 1 Pa    |               |                     | levels<br>at 1 Pa                            |  |
| Ocean/<br>atmosphere<br>coupling | Every hour from day 0  |               |            | Ev                        | Every 3 hours from day 10 |                                |                             | Eve           | Every 3h from day 0 |                                              |  |
| Re-forecast<br>period            | Past 12 years          |               |            | Pa                        | Past 18 years             |                                |                             | Past 20 years |                     |                                              |  |
| Re-forecast<br>size              | 5 members, once a week |               |            |                           |                           |                                | 11 members,<br>twice a week |               |                     |                                              |  |
| Initial conditions               | ERA 40                 |               |            | ERA Interim               |                           |                                |                             |               |                     |                                              |  |

# First report to the international community

- Cubasch, Tibaldi, Molteni: Deterministic extended-range forecast experiments using the global ECMWF spectral model
- Molteni, Cubasch, Tibaldi: Experimental monthly forecasts at ECMWF using the lagged-average forecasting technique
- 4 case studies in winter 1983/84
- 9-member lagged-average forecasts
- I.C. from operational analysis at 6-hour interval
- T21 and T42 spectral model
- Fixed SST, persisted from I.C. (no cheating!)
- Correction for systematic error, based on 10 30-day integrations in winters 1981/82 and 1982/83, started at 10-day intervals
- Comparison w.r.t. deterministic forecast from last I.C. and persistence

WORLD METEOROLOGICAL ORGANIZATION

#### PROGRAMME ON LONG-RANGE FORECASTING RESEARCH





WMO/TD · No. 87

# A success story: forecasting the Madden-Julian Oscillation



MJO teleconnections in October-March

#### 500 hPa height, MJO phase 3 + 10 days



# Impact of MJO on NAO+ frequency in 46-day EPS



# Impact of MJO on forecast reliability



T\_850 > upper tercile, fc. day 19-25

Blue line: no MJO in IC Red line: MJO in IC



# Impact of stochastic physical tendencies on MJO forecast skill

Model cycle: 40R1

Resolution: T399/T255 L91

Hindcast ensemble: 32-day forecasts initialised on 1<sup>st</sup> Feb/May/Aug/Nov 1989-2008 with 11 ensemble members Stochastic physics: 3-scale SPPT and SKEB as in operation



MJO Index - Bivariate RMSE

# Significant increase in ensemble spread

- $\rightarrow$  Improved reliability
- $\rightarrow$  Improved probabilistic forecast scores

#### Grid mesh/resolution and sp. harmonic truncation in spectral models

Linear grid:spectral truncation N-1, 2N grid points at the equatorQuadratic grid:spectral truncation N-1, 3N grid points at the equatorCubic grid:spectral truncation N-1, 4N grid points at the equator



"Reduced" grid: No. of points in longitude decreases in steps Octahedral grid: No. of points in longitude decreases continuously

#### 2016 atmos resolution upgrade: $41r1 \rightarrow 41r2$

from linear (L) grid to cubic octahedral (Co) grid

|          | HRES         | ENS                | 4DV              | 4DVAR Inner Loops             |                 |             | EDA loops       |                 |  |  |
|----------|--------------|--------------------|------------------|-------------------------------|-----------------|-------------|-----------------|-----------------|--|--|
| Grid res |              | LegA LegB/4        | d 1 <sup>5</sup> | <sup>st</sup> 2 <sup>nd</sup> | 3 <sup>rd</sup> | Outer       | 1 <sup>st</sup> | 2 <sup>nd</sup> |  |  |
| 128 km   |              |                    | TL25             | 5 TL255                       | TL255           |             | TL159<br>TL191  | TL159<br>TL191  |  |  |
| 64 km    |              | TL319              | ]                | TL319                         |                 | TI 399      |                 |                 |  |  |
| 32 km    |              | ▼<br>TL639 TCo31   |                  |                               | 12000           |             |                 |                 |  |  |
| 16 km    | TL1279       | <b>₩</b><br>TCo639 |                  |                               |                 | ¥<br>TCo639 | ]               |                 |  |  |
| 9 km     | ¥<br>TCo1279 |                    |                  |                               |                 |             |                 |                 |  |  |

Ocean model in ENS (NEMO): from 1.0°/42 lev to 0.25°/75 lev in late 2016

# KE spectra for Oper (TL1279) and TCo1279





#### ENS 41r2 TCo639 vs 41r1 TL639: TC position and intensity



#### Tropical Cyclones: ENS TL639 $\rightarrow$ TCo639



#### Impact of resolution upgrade on sub-seasonal scores



#### Impact of resolution on track probability- Tropical cyclone PAM, 9-15/03/2015





## MJO event, 26/02/2015



New higher-resolution ocean model

# 1/4 vs 1 degree – Z500 skill scores -NH



### **Correlations for week 4 Northern Hemisphere**



# **Summary**

- Sub-seasonal predictions at ECMWF have shown substantial progress in the last 10 years, thanks to increased resolution, improved physical parameterizations (especially convection), unification of medium-range and sub-seasonal ensemble systems, ocean-atmosphere coupling from day 0, extended re-forecast set.
- The planned increase in atmospheric horizontal resolution beyond ~40 km improves fidelity and probabilistic predictions for intense phenomena and events, but has a smaller impact on traditional large-scale scores.
- Promising results from experiments with ¼-degree ocean model (NEMO) and dynamical sea-ice (LIM2), but still a lot of work to do!



# Thanks !