

Copernicus C3S Projection Workshop 20-21 April 2015 Reading

Access to CMIP climate projections: strengths, weaknesses & perspectives Sylvie Joussaume CNRS, IPSL, Saclay, France Coordinator of FP7 IS-ENES2 Chair ENES Board

Modeling Intercomparison Project Cycles WCRP & WGNE

AMIP (atmosphere only) started in 1990 – PCMDI - Larry Gates vison From then the "MIP family" has grown (PMIP the second one in 1991)

Working Group on Coupled Models (since 1995): CMIP WCRP Working Group on Coupled Models CMIP + other MIPs - used in TAR CMIP3 + other MIPs - used in AR4 CMIP5 : NEW DESIGN, more extensive - used in AR5 CMIP6 starting now

Coordinated numerical experiments In support of climate science & larger user communities Extensively used for IPCC ARs:

Model evaluation / Future climate / Process studies

Common database & common analysesCMIP3 : > 250 publications (2007)/ CMIP5 > 750 publications (2014)2500 registered users/ 2014 : ESGF 10 000 users

27 modelling groups
58 models

1 Canada

CanAM4
CanCM4
CanESM2
CESM1(BGC)
CESM1(CAM5)
CESM1(CAM5.1, FV2)
CESM1(FAST CHEM)
CESM1(WACCM)
CCSM4
GFDL-CM2.1
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
GFDL-HIRAM-C180
GFDL-HIRAM-C360
GEOS-5
GISS-E2-H
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC
CFSv2-2011

6 USA

	NorESM1-M					
NCC	NorESM1-ME					
	MPI-ESM-LR					
	MPI-ESM-MR					
MPI-M	MPI-ESM-P					
	HadCM3					
	HadGEM2-A					
	HadGEM2-CC					
МОНС	HadGEM2-ES					
EC-EARTH	EC-EARTH					
	IPSL-CM5A-LR					
	IPSL-CM5A-MR					
IPSL	IPSL-CM5B-LR					
CNRM-CERFACS	CNRM-CM5					
	CMCC-CESM					
	CMCC-CM					
СМСС	CMCC-CMS					
INM	INM-CM4					
1 Russia						
	2 Australia					

7 in Europe

5 China / 1 Korea

	FGOALS-gl			
LASG-IAP	FGOALS-s2			
LASG-CESS	FGOALS-g2			
GCESS	BNU-ESM			
FIO	FIO-ESM			
	BCC-CSM1.1(m)			
BCC	BCC-CSM1.1			
NIMR/KMA	HadGEM2-AO			
NICAM	NICAM.09			
	MRI-AGCM3.2H			
	MRI-AGCM3.2S			
MRI	MRI-CGCM3			
	MIROC-ESM			
MIROC	MIROC-ESM-CHEM			
	MIROC4h			
MIROC	MIROC5			
CSIRO-QCCCE	CSIRO-Mk3.6.0			
	ACCESS1.0			
CSIRO-BOM	ACCESS1.3			
	LASG-IAP LASG-CESS GCESS FIO BCC NIMR/KMA NICAM MRI MIROC CSIRO-QCCCE CSIRO-BOM			

IPCC AR5 TS (20	IPCC AR5 TS (2014)		046–2065	2081–2100	
	Scenario	Mean	<i>Likely</i> range ^c	Mean	Likely range ^c
Global Mean Surface Temperature Change (°C)ª	RCP2.6	1.0	0.4 to 1.6	1.0	0.3 to 1.7
	RCP4.5	1.4	0.9 to 2.0	1.8	1.1 to 2.6
	RCP6.0	1.3	0.8 to 1.8	2.2	1.4 to 3.1
	RCP8.5	2.0	1.4 to 2.6	3.7	2.6 to 4.8

Decadal climate predictions

See talk by Francisco Doblas-Reyes

A common infrastructure distributed database & standards

CMIP5: 2 PB

See my talk at CDS WK

Adoption of common standards/ conventions for the:

Structure and format of climate data Metadata used to describe climate data Vocabulary used for categorizing the diversity of model output

& Documentation of Model/experiments (ES-DOC) Standardization enables/facilitates Automation in the preparation of model output Analysis by researchers using uniform methods for reading and interpreting data Unique identification of files Sharing of data across the ESGF network

Ref: from Doutriaux and Taylor, 4th ESGF meeting, 12/2014

Multi-model ensemble : informs on robustness of changes

Model evaluation

OBS other set of observations

LW outgoing radiation

SW cloud radiative effect

CMIP5 model performance

Normalized

IPCC AR5 WGI, chap 9 Based on Gleckler etal. (2008)

Good performance at large regional scale/ weak at smaller scale

Regional climate model (~ 44-12 km)

See CORDEX talks Daniela Jacob& Filipo Giorgi

Impact models: use of bias corrected GCM simulations

Temperature change at which ecosystems are at severe risk of change ISIMIP from CMIP5

Inter_Sectoral Impact MIP

Warszawski et al. ERL (2013)

Impact on malaria distribution

rcp26 2080s rcp45 2080s rcp45 2080s rcp60 2080s rcp60 2080s rcp65 2080s rcp60 2080s rcp65 2080s rcp65

Perspectives

WCRP Grand Challenges: (1) Clouds, circulation and climate sensitivity, (2) Changes in cryosphere, (3) Climate extremes, (4) Regional climate information, (5) Regional sea-level rise, and (6) Water availability, plus an additional theme on "Biogeochemical forcings and feedbacks"

Towards higher spatial resolution

Summer precipitation 2005 Simulations global climate model HADGEM3 Resolutions 135km → 12km PRACE UPSCALE project

HiResMIP:

investigate 25 km resolution 1950-2050 - AMIP / Coupled R. Haarsma& M/ Roberts

H2020 PRIMAVERA Project M. Roberts & P.L. Vidale

Courtesy of PL Vidale (NCAS) & M. Roberts (MO/HC)

Need to improve model parameterisations e.g. clouds

Models

mean clcalipso 1950/01-2009/12 Model:CCCMA

Better documented uncertainties associated with internal variability

L. Terray, Workshop Adaptation and uncertainties, June 2012, http://www.gisclimat.fr

IS-ENES, Circle2 Eranet and EEA **Data needs for the impact community** Copenhagen, 11-12 january 2011

Access to both global and regional climate change simulations Need for processing tools and processed data Provide guidance on uncertainties and how to use climate models results Eventually provide different sources of information in one linked system Improve access to data and training IS-ENES Climate4impact portal

- Need multiple access routes uncluttered for the expert user, with detailed guidance and explanation of options for others;
- Clear need for a stable interface research project portals which come and go will not meet user needs;
- Regular data updates;
- Clear guidance;
- Multiple data formats;
- Etc;

Summary

Strengths

Coordinated large ensemble:

Better ensemble mean, range of uncertainty Set of consistent experiments Well evaluated

Source for downscaling, computation of various indicators Infrastructure: common database with common standards for data & metadata

Weaknesses / Limitations

Limited resolution, better at large regional scale (>2000 km) Biases Downscaling & bias corrections CORDEX added value - Also with limitations

Perspectives

New CMIP6 set: increased model resolution, improved processes CMIP6 and beyond: future global coupled simulations at 25 km Strong limitations of computing power

C3S Access to projections : CMIP as a strong basis Overview of climate changes – complemented by CORDEX Source for tailored downscaling and indicators Need for guidance

Thank you !

SeaWIFS Project (NASA/GSFC et Orbimage)