Observational feedback:

What reanalysis tells us about the quality of observations

(and what observations tell us about other climate information)

Paul Poli

Acknowledgements: Dick Dee, Paul Berrisford, Hans Hersbach, David Tan, Shinya Kobayashi, and participants of the Core-Climax coordination meeting towards exchanging observation feedback

Outline

• What is reanalysis observational feedback?

- What does it tell us?
- Practicalities

Observations are sources of information

Climate information sources

Reanalysis is über-cool

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Climate information sources

ECMWF Observation Feedback Archive organization

Outline

- What is reanalysis observational feedback?
- What does it tell us?
- Practicalities

Assimilation feedback example 1 understanding the shifts in ERA-Interim water cycle

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

- Due to assimilation of rain-affected radiances from SSM/I, now fully understood (Geer et al. 2008)
- Effect scales (non-linearly) with the N. of assimilated SSM/I data

Assimilation feedback example 2 relationship between MSU and radiosonde records

Assimilation feedback example 3 estimating surface pressure observation errors

Using the method of Desroziers et al. (2005; Q.J.R. Meteorol. Soc. doi: 10.1256/qj.05.108)

- T obs. mean departures from ERA-Interim analyses increase with solar angle: where is the bias, in obs. or ERA-Interim?
- RH obs. mean departures from ERA-Interim analyses decrease with solar angle: where is the bias, in obs. or ERA-Interim?

Based on land surface observations found in ERA-Interim obs. feedback, latitudes 20S-90S, Oct 1978-Jan 1989

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Assimilation feedback to improve obs QC

Marine surface winds from buoys

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Climate information sources

81513 Pa at station level (1861m) AGUASCAL, Mexico, 17 Sep 2020 at 23UTC

biased by 50 Pa

81645 Pa

ECMWF

OPS, and

analysed by

obs. possibly

81645 Pa analysed by ERA5, and obs. possibly biased by 45 Pa

82030 Pa estimated by ERA-20C which didn't use this obs. dataset

82030 Pa estimated by CMIP6 climate projection #1

82530 Pa estimated by CMIP6 climate projection #2

Allows to compare "observed vs. predicted"

over a long lime period, assimilating observations **Obser-Models** vations CECMWF EIRODEAN GENERAL GENERA

Independent feedback example 1 Spotting inconsistencies in SSMT2 observations by comparing with an instrument simulator (RTTOV)

SSM/T-2, DMSP F14, 6-hour period around 20010101, 12UTC

Independent feedback example 2

Guessing" instrument characteristics a posteriori

Independent feedback example 3 Assessing ancillary sea-ice data in SSM/I FCDR

Contingency table for the sea-ice reported in the FCDR (columns a, b) and matching sea-ice fraction from ERA-20C (HadISST2.1.0.0) at 1% or above (rows 1, 2), for 19970116, satellite F13

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Independent feedback to improve obs QC

Data recovered after imaging and digitization efforts

CHUAN dataset available on PANGEA

http://doi.pangaea.de/10.1594/PANGAEA.821222

Intra-observation feedback Example 1:

finding a leap second ...

Look for best-match in terms of brightness temperature among data:

- Identical satellite
- Identical scan position numbers
- Identical channel numbers
- Time differences within 10 seconds
- Location differences within 100 km.

Why? Between F13 launch in March 1995 and on 16 January 1997, a leap second was introduced on 1 January 1996 (Source: BIPM, <u>http://www.bipm.org/en/bipm-services/timescales/time-ftp/publication.html#nohref</u>), to keep the UTC (normally synced to atomic time) within 1s of mean solar time
By the way, the last leap second was ... yesterday! (30 June 2015 ended at 23:59:60)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Intra-observation feedback

Example 2: variability of humidity with temperature 288.15 289.25 288.35 287.05 286.55 285.65 ... 285.55 287.35 282.45 285.65 285.65 285.65 ...

Intra-observation feedback Example 2: variability of humidity with temperature

• Depressions discretized with 1K accuracy!

 Variability in ERA-Interim analyses for <u>exactly</u> the same sample of event

Based on land surface observations found in ERA-Interim obs. feedback, latitudes 20S-90S, Oct 1978-Jan 1989

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Value or impact of observations in reanalysis

Analysis sensitivity to observations (Cardinali *et al.* 2004, Q.J.R. Meteorol. Soc., doi: 10.1256/qj.03.205) computed routinely in ERA-Interim

Outline

- What is reanalysis observational feedback?
- What does it tell us?
- Practicalities

This is all very nice, but ...

Has anybody here seen reanalysis

observational feedback before?

Reanalysis observational feedbacks available in 2015

MERRA gridded innovation observation (GIO)

http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings/merra-innov

ECMWF ERA-40 and NCEP/NCAR

http://apps.ecmwf.int/services/mars/catalogue/?type=af&class=e4&stream=oper&expver=1

http://rda.ucar.edu/datasets/ds090.0

• NOAA 20CR feedback is part of ISPD http://rda.ucar.edu/datasets/ds132.0/

ICOADS value-added database

http://icoads.noaa.gov/ivad/ (under development)

• ECMWF ERA-20C feedback

http://apps.ecmwf.int/datasets/data/era20c-ofa/

- But I concede that these are not the most user-friendly data to use, with the exception of GIO perhaps.
 - These are still disjoint efforts. No uniform language or harmonization, and no systematic effort across reanalyses. A meeting was organized to review the current situation, identify gaps, and propose ways

ECMUF european centre for medium-range weather forecasts

Meeting on reanalysis observation feedback, sponsored by Core

- Core-Climax is an EU FP7 project that ended yesterday (30 June 2015)
- Meeting was held at ECMWF, 11-13 November, 2014
- Conclusions
 - reanalysis observation feedback contains highly valuable information to enhance understanding of Earth System Models and corresponding observations, by confronting each other in the same variable, location and time.
 - Although historical information exists about satellite observation data quality, it is distributed between the several reanalysis centers' "blacklists" and the data providers' notes and logs. Much would be gained by exchanging all this information.
 - (...)
- Complete report and meeting presentations are available from

http://www.coreclimax.eu/?q=Feedback

Meeting on reanalysis observation feedback, sponsored by C Core

- Reviewing current practices:
 - The satellite climate data record producers represented at the meeting (EUMETSAT and NOAA/STAR) express the need for quantitative, datumlevel information, from the observation feedback produced by reanalyses. This is to be used for detailed investigation of the impact of their products, and to improve their understanding of the data quality by comparison with the reanalysis, its quality control, the assimilation innovations (departures), and the bias corrections.
 - Reanalysis producers do not generally provide convenient access to their observation feedbacks, which are all found to use complex and center-dependent data models, formats, attributes (...)
- Discussing ways forward to improve upon the current situation:
 - The group proposes a canonical definition of observation feedback, _ whereby the smallest element is a record that identifies uniquely an observation datum, its position in space, time, the vertical or channel, and a series of basic, agreed, attributes, for which little confusion is possible.

(...)

One issue that came up as problematic

• Was Governance! It's o.k. to define some terms, but before investing in software to implement this, how to maintain definitions and evolve them?

- There is well-established governance for big-ticket contributors to the observing system:
 - WMO common tables section C for all (current) instruments and satellites
 - Though many defunct satellite sensors are not listed there
 - List of vessels and buoys → In large collections such as ICOADS
 - Lists of upper-air sounding sites → In large collections such as IGRA and CHUAN
- Governance less well-established for land surface stations → badly need an ICOADS for land!
- No governance to define names for assimilation feedback

Before going further

- We need to speak the same language about the typology of observations
- We need to formalize the interactions, and how we name them
- We need to categorize the various levels of information contained in observations and models

Concepts on how to exploit this information

• Reanalysis users enjoy the 'regular' hyper-cube that reanalysis offer: all spatio-temporal dimensions are covered, there is no gap, etc...

• Observations on the other hand present a highly irregular problem if considered as a hyper-cube:

- Satellite sounders can have from 1 to several thousand channels
- Radiosondes can have from ~100 to several thousand levels
- The geophysical variables reported from surface stations typically depend on the route by which they were received (BUFR encoding for GTS)

• However, it is still possible to bring this problem back to a serial one, by considering the observing system as a tree of multiple branches

Concepts for a simple exploitation of observation feedback

 "Monitoring long data assimilation time series: a reanalysis perspective with Era-Interim" (2009)

(http://old.ecmwf.int/newsevents/meetings/workshops/2009/Diagnostics DA System Performance/presentations/Poli.pdf)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Conclusions

- Reanalysis observation feedback is a mine of information
 - Also allows to assess earlier projections ("obs vs. projected")
- Does the reanalysis community keep its feedback to itself?
 - Not quite, but there is no standard for exchange and making available
 - Even though there are a the few datasets available
 - Some initial agreements have been reached between reanalysis producers, but turning these good intentions into practical, standardised datasets requires governance
- Opening up the access will attract users
 - To learn about observations and improve the record
 - Also as educational material for 'big data mining'
- However, serving the 'raw' data will not be sufficient
 - To ease user uptake, one needs computing/aggregation, visualization facilities to allows 'discovery' of the observing system: <u>movie example</u>