Near-surface observations for coupled atmosphere-ocean reanalysis

Patrick Laloyaux

Acknowledgement: Clément Albergel, Magdalena Balmaseda, Gianpaolo Balsamo, Dick Dee, Paul Poli, Patricia de Rosnay, Adrian Simmons, Jean-Noel Thépaut, the rest of the reanalysis team and many others at ECMWF.

Outline

- Current status and future plans of reanalysis at ECMWF
- Challenges for near-surface observations to support climate reanalysis
- Impact of near-surface observations in coupled assimilation
- Conclusions and requirements for future observing systems

Current status and future plans of reanalysis at ECMWF

Type 1: Reanalyses of the modern observing period (~30 - 50 years)

- Use a single model and data assimilation method
- Use as many observations as possible, including from satellites
- Produce the best state estimate at any given time

Operational ECMWF products: ERA-Interim (atmosphere) & ORAS4 (ocean)

Key Strengths:

Support the development and the evaluation of Numerical Weather Prediction

Support Numerical Weather Prediction development and evaluation

Operations: improvements in

- model
- data assimilation
- observing system

Reanalysis: improvements in

- observing system
- → The comparison shows that most of the improvements in operational forecast skills comes from a better model and data assimilation system
 → ERA-Interim allows to evaluate NWP forecast skills

Type 1: Reanalyses of the modern observing period (~30 - 50 years)

- Use a single model and data assimilation method
- Use as many observations as possible, including from satellites
- Produce the best state estimate at any given time

Operational ECMWF products: ERA-Interim (atmosphere) & ORAS4 (ocean)

Key Strengths:

Support the development and the evaluation of Numerical Weather Prediction

Support the computation of operational forecast products

Support the computation of operational forecast products

Extreme Forecast Index (EFI) detects extreme events in a given ensemble forecast.

Difference between the ensemble forecast distribution and a reference distribution (M-climate)

- an ensemble re-forecast for the most recent 20 years
- initial conditions taken from ERA-Interim

Friday 28 February 2010 DDUTC ©ECNWF Extreme forecast in dex t+048-072 VT: Sunday 28 February 2010 DDUTC - Monday 1 March 2010 DDUTC Surface: 10 metre wind gust index

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

EFI for 10-meter wind gust for 1 March 2010 2-day warning for windstorm Xynthia

Type 1: Reanalyses of the modern observing period (~30 - 50 years)

- Use a single model and data assimilation method
- Use as many observations as possible, including from satellites
- Produce the best state estimate at any given time

Operational ECMWF products: ERA-Interim (atmosphere) & ORAS4 (ocean)

Key Strengths:

Support the development and the evaluation of Numerical Weather Prediction Support the computation of operational forecast products Potential limitations:

Some climate signals may be affected by changes in the observing system

Some climate signals may be affected by changes in the observing system

Solid line: ERA-Interim temperature anomalies relative to 1979–2001 (monthly and globally averaged)

Good trends for surface temperature (compared to gridded dataset)

El-Nino, El Chichon and Pinatubo events

Issue at 1hPa with the introduction of a new satellite (AMSU-A) → Improve the use of these observations to reduce the jumps

Type 1: Reanalyses of the modern observing period (~30 - 50 years)

- Use a single model and data assimilation method
- Use as many observations as possible, including from satellites
- Produce the best state estimate at any given time

Operational ECMWF products: ERA-Interim (atmosphere) & ORAS4 (ocean)

Key Strengths:

Support the development and the evaluation of Numerical Weather Prediction Support the computation of operational forecast products Potential limitations:

Some climate signals may be affected by changes in the observing system

Type 2: Extended climate reanalyses (~100 - 200 years)

- Use a single model and data assimilation method
- Use only a restricted set of observations
- Focus on consistency and low-frequency climate variability

ECMWF product: ERA-20C (atmosphere)

 \rightarrow Assimilate only surface pressure and ocean surface winds from conventional instruments

Key Strengths:

Production of consistent long term climate records

Production of consistent long term climate records

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

GPCC precipitation gridded dataset

- 1°x1° grid resolution
- Independent

Precipitation anomaly averaged over Europe in mm/day (12-month running mean, anomalies relative to 1961-1990)

→ ERA-20C represents well the interannual fluctuations for the whole century, especially from 1945 onwards

Type 2: Extended climate reanalyses (~100 - 200 years)

- Use a single model and data assimilation method
- Use only a restricted set of observations
- Focus on consistency and low-frequency climate variability

ECMWF product: ERA-20C (atmosphere)

 \rightarrow Assimilate only surface pressure and ocean surface winds from conventional instruments

Key Strengths:

Production of consistent long term climate records

Potential limitations:

Lower forecast skill scores (ERA-20C 3d-forecast similar to ERA-Interim 6d-forecast)

Selected observing system still evolves over the 20th century

Selected observing system still evolves over the 20th century

Timeseries of the model correction in ERA-20C (due to the assimilation of observations)

- \rightarrow Consistent model correction over the 20th century
- → Some room for improvement to deal with the increasing number of observations

Type 2: Extended climate reanalyses (~100 - 200 years)

- Use a single model and data assimilation method
- Use only a restricted set of observations
- Focus on consistency and low-frequency climate variability

ECMWF product: ERA-20C (atmosphere)

 \rightarrow Assimilate only surface pressure and ocean surface winds from conventional instruments

Key Strengths:

Production of consistent long term climate records

Potential limitations:

Lower forecast skill scores (ERA-20C 3d-forecast similar to ERA-Interim 6d-forecast) Selected observing system still evolves over the 20th century

Future plans for reanalysis

Uncoupled assimilation systems in operations:

Atmospheric reanalysis: Computed by IFS Prescribed sea surface temperature Assimilation of atmospheric observations

- ERA-Interim replaced by ERA-5
- ORAS4 replaced by ORAS5

Coupled assimilation system in research (CERA):

Coupled atmosphere-ocean reanalysis Computed by the coupled IFS-NEMO model One-hour coupling frequency Simultaneous assimilation of atmospheric and ocean observations

- CERA-20C: extended climate reanalysis
- CERA-SAT: reanalysis of the modern observing period

Ocean reanalysis Computed by NEMO Constrained by atmospheric forcing Assimilation of temperature and salinity profiles (EN4) Challenges for near-surface observations to support climate reanalysis

Adjustment of past measurements – Sea Surface Temperature

SST is a key variable for coupled assimilation system

- · observations are needed to avoid large biases at air-sea interface
- observations not yet assimilated at ECMWF, rely on external gridded dataset

Different instruments and sampling methods lead to different observation biases

- \rightarrow Buckets have cold biases
- \rightarrow ERI have small warm biases

Annual SST anomalies (relative to 1961-1990)

ICOADS (raw data) adjusted in HADSST3

Adjustments suffer from

- \rightarrow inadequate documentation of sampling characteristics
- \rightarrow no proper overlap for intercomparison

Long term observation records - Global tropical moored buoy array

Collocated ocean and atmosphere measurements:

- study coupled phenomena (e.g. tropical cyclone)
- study climate variations related to ENSO

Long term observation records - Global tropical moored buoy array

Budget cuts pushed NOAA to retire a ship dedicated for the service

- \rightarrow \$3 million cut
- \rightarrow half of all measurements lost
- \rightarrow Produce serious gaps in the climate records

Timeseries from one TAO mooring for temperature

Impact of near-surface observations in coupled assimilation

Positive impact of the coupled assimilation

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Positive impact of the coupled assimilation - Tropical cyclone Phailin

Illustration of a specific weather event:

- Bay of Bengal
- formed on the 4th October 2013
- Argo probe with high-frequency measurements

Temperature measurements at 40-meter depth

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Positive impact of the coupled assimilation - Tropical cyclone Phailin

Ocean temperature analysis at 40-meter depth

 \rightarrow Coupled analysis has a stronger cold wake (closer to observations)

Positive impact of the coupled assimilation - Tropical cyclone Phailin

Wind measurements from scatterometers

Ocean temperature analysis at 40-meter depth (no scatterometer data in dashed)

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Benefits of data reprocessing: ASCAT for soil moisture analysis (2010)

- \rightarrow 4 times more assimilated observations in REPROC
- \rightarrow Background and analysis mean departure errors reduced by 30%

Conclusions and requirements for future observing systems

Conclusions and requirements for future observing systems

Do not repeat the mistakes made in the past in the production of observation records

- poor documentation about instruments and sampling methods
- changes in observing system without adequate overlap and intercomparison
- gaps in observation records

Continue to improve the use of observations

- data assimilation methods (coupling, better representation of the diurnal cycle)
- reprocessing the datasets

Provide uncertainties with observations

• a set of interchangeable realisations of the observation dataset (e.g. HADISST2)

