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Linearized models in NWP

• first applications with adiabatic linearized model

• nowadays, the physical processes included in the linearized model

• different applications:

– variational data assimilation                 like incremental 4D-Var

– singular vector computations              initial perturbations for EPS

– sensitivity analysis                               forecast errors

4D-Var – Four-dimensional Variational Data Assimilation

EPS     – Ensemble Prediction System
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Linearized model with physical processes

• in variational data assimilation:

– reduce spin-up

– provide a better agreement between the model and data

– produce an initial atmospheric state more consistent with physical processes

– allow the use of new observations (rain, clouds, soil moisture, …)

• in singular vector computations:

– help to represent some atmospheric features

(processes in PBL, tropical instabilities, development of baroclinic instabilities, …)

• in sensitivity analysis:

– allow a reduction of forecast error

Including physical processes can:

• adjoint of physical processes can also be used for:

– model parameter estimation

– sensitivity of the parametrization scheme to input parameters
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• In current operational systems, most used observations are directly or indirectly

related to temperature, wind, surface pressure and humidity outside cloudy

and precipitation areas (~ 10 million observations assimilated in ECMWF

4D-Var every 12 hours).

• Physical parametrizations are used during the assimilation to link the model’s

prognostic variables (typically: T, u, v, qv and Ps) to the observed quantities

(e.g. radiances, reflectivities,…).

• Observations related to clouds and precipitation also started to be routinely

assimilated (presentation of A. Geer),

 but how to convert such information into proper corrections of the model’s

initial state (prognostic variables T, u, v, qv, Ps) is not so straightforward.

For instance, problems in the assimilation can arise from the discontinuous

or non-linear nature of physical processes (presentation of P. Lopez).

Why physical parametrizations in data assimilation?
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Observations

with errors

a priori information from model 

= background state with errors

Data assimilation system 

(e.g. 4D-Var)

Analysis

Forecast

NWP model

- to link the model variables to the observed quantities,

- to evolve the model state in time during the assimilation (e.g. 4D-Var).

Physical parametrizations are needed in data assimilation:

Simplistic description of data assimilation and forecasting system



Reading, UK © ECMWF 2015

Example: Physics (full & simplified) in incremental 4D-Var system
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Impact of linearized physics on analysis

Coming just from including the ECMWF linearized physics in 4D-Var (Janisková & Lopez, 2013)  

4D-Var experiment – July-Sept.2011 

nophys = only very simple vertical diffusion

and surf.drag of Buizza (1994)

allphys = all linear. phys.parametrization:

- vertical diffusion

- gravity wave drag

- radiation

- nonorog. gravity wave drag

- large scale cond. & precip.

- convection

background cost function

observation cost function

dry

moist

bo JJJ 
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NHem

SHem

Tropics

700hPa temperature

T511L91 FC run: Forecast scores against operational analysis

Anomaly correlation – July-Sept. 2011: bars indicate significance at 95% confidence level

Coming just from including the ECMWF linearized physics in 4D-Var (Janisková& Lopez, 2013)  

700hPa relative humidity 200hPa vector wind

positive values 
↓

forecast improvement

Direct relative improvement of forecast scores from linearized physics (1)
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Direct relative improvement of forecast scores from linearized physics (2)
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Forecast:

Wind

vector

Relative impact [%] of the surface related 

modifications in the tangent-linear model 
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12-hour evolution of zonal wind increments

Negative values 

(blue)

↓

improvement

u-wind
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• Operational assimilation of:

‒ satellite infrared radiances in overcast conditions at ECMWF                (McNally 2009)

‒ microwave radiances in all sky conditions (Bauer et al. 2010, Geer et al. 2010)

‒ direct 4D-Var of NCEP Stage IV radar & gauge hourly precipitation data  (Lopez 2011)

• Experimental assimilation of :

‒ 1D+4D-Var of SSMI/TMI rainfall rates                                            (Mahfouf et al. 2003)

‒ cloud-affected infrared radiances from AIRS in 4D-Var               (Chevallier et al. 2004)

‒ cloud optical depth from MODIS in 4D-Var                   (Benedetti and Janisková 2008)

‒ 4D-Var assimilation of SYNOP rain gauge data (Lopez 2012)

‒ 1D+4D-Var of cloud information from satellite cloud radar & lidar (Janisková 2015)

Examples of rain & cloud related observations and their assimilation 

1D-Var – One-Dimensional Variational assimilation                    AIRS – Advanced Infrared Sounder

MODIS – Moderate Resolution Imaging Spectroradiometer      SSM/I – Special Infrared Sounder

In global models :

In mesoscale models :

• Cloud analyses based on nudging technique

(Macpherson et al. 1996, Lipton & Modica 1999, Bayer et al. 2000)

• Ground-based precipitation radar assimilation in 4D-Var                     (Tsuyuki et al. 2002)

• Testing visible & infrared cloudy satellite radiances in 4D-Var (Vukicevic et al. 2004)
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Tropics

NHem

SHem

700hPa temperature

EXP: T511L91

Anomaly correlation – June-Aug. 2014: bars indicate significance at 95% confidence level

Using observations directly related to the physical processes (e.g. rain, clouds,…) 

700hPa relative humidity 200hPa vector wind

T799L137 FC run: Forecast scores against operational analysis

positive values 
↓

forecast improvement

Indirect relative improvement of forecast scores from ECMWF linearized physics
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Three 4D-Var assimilation experiments (20 May - 15 June 2005):

CTRL = all standard observations.

CTRL_noqUS = all obs except no moisture obs over US (surface & satellite).

NEW_noqUS = CTRL_noqUS + NEXRAD hourly rain rates over US ( “1D+4D-Var”).

CTRL_noqUS – CTRL NEW_noqUS – CTRL_noqUS

Mean differences of TCWV analyses at 00UTC

Own impact of combined ground-based radar & rain gauge observations 

Lopez and Bauer (Monthly Weather Review, 2007)

Assimilation of NCEP Stage IV hourly precipitation data over the U.S.A.
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• 1D-Var + 4D-Var approach built on experience of using such technique for formally

operational assimilation of precipitation related observations (Bauer et al. 2006 a, b):

‒ 1D-Var retrieval first run on the set of  observations to produce pseudo-observations 

of temperature T and specific humidity q  (based on evaluation of T & q increments); 

‒ modified T and q profiles then assimilated in the ECMWF 4D-Var system.

Experimental assimilation of space-borne cloud radar & lidar obs. at ECMWF

1D-Var – One-Dimensional Variational assimilation

4D-Var – Four-Dimensional Variational assimilation

1D-Var

y: observations averaged 
over model grid box (T799)

4D-Var

cloud radar reflectivities or/and
lidar backscatter

x_b:
background T,q

H(x): moist physics 
+ reflectivity model
+ backscatter model

1D-Var (T,q increments)

pseudo T, q observations

4D-Var

– cloud radar reflectivity:  

CloudSat at 94 GHz   (R)

– cloud lidar backscatter:   

CALIPSO at 532 nm  (L)

– combined (C = R + L)

Observations:

(Janisková et al. 2012,

Janisková 2015)
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1D-Var of cloud radar reflectivity + lidar backscatter 

Observations (CloudSat)

First guess

2007012400 over PacificReflectivity in dBZ

Analysis_R

Backscatter in km-1 sr-1

Observations (CALIPSO)

First guess

Analysis_C

1D-Var analysis gets closer to assimilated and also independent observations:

impact of cloud radar reflectivity larger than of lidar backscatter
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1D+4D-Var of satellite cloud radar & lidar – impact on subsequent forecast

Specific humidity [g/kg]     T+24 Temperature [K]     T+24 Wind     T+24

Negative values (blue colours): 

rms of EXP smaller than REF

• modified T, q profiles from 1D-Var of radar & lidar used as pseudo-obs in 4D-Var   

• assimilation cycle of 12 hours, adding the new observations to the full system

of regularly assimilated observations + 10-day forecast run from the analyses

Generally, a positive impact of the new observations on the subsequent forecast:

+ even though it decreases in time, it is still noticeable up to 48-hour forecasts

+ small additional improvement when the radar and lidar observations combined

Janisková, 2015

Latitude Latitude Latitude

hPa
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Using linearized physics in singular vector computation

Composites of vertical integrated 

Total Energy of initial SVs 1-5

Tropical cyclone (TC) Helene   

(16 – 24 Sept. 2006)
Dry+Moist: TL255SimpDry: TL255 ≈ 80km

SimpDry: TL159 ≈ 125km Dry+Moist: TL159

• Singular vectors (SVs) used to 

generate perturbations to the initial  

conditions in the EPS of ECMWF.

• SVs = the fastest-growing 

perturbations over a finite time 

interval

→ sampling the dynamically most  

relevant structures to dominate 

the uncertainty sometime in future

• With increased resolution or including more diabatic processes in SV calculation:

→ more SV structures associated directly with the TC than other flow features

→ baroclinic flow enhanced closer to the centre of TC when accounting for moist processes

• If used to initialize EPS, higher resolution moist SVs → larger spread of wind speed, track and 

intensity of TC

SimpDry = only very simple vertical diffusion

and surface drag of Buizza (1994)
Lang et al., 2012
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• adjoint models allow the computation of the gradient of one output

parameter of a numerical model with respect to all its input parameters

application in the study of sensitivity problems

Using adjoint model for sensitivity

Adjoint FT of the linear operator F provides the gradient of an objective (cost) function J

with respect to x (input variables) given the gradient of J with respect to y (output variables):

y
F

x 






 JJ
 

T
or JJ yx F   

T

• For parametrization schemes – thorough evaluation of the relative importance of 

different variables  (i.e. identification to which variables the schemes are most sensitive)

• Analysing sensitivity of a forecast error to initial conditions or any forecast aspect

(e.g. precipitation, cyclone, …) to the model control variables

• In data assimilation systems – measuring sensitivity with respect to any parameter

of importance: 

(e.g., as a diagnostic tool to monitor the observation impact on short-range forecasts) 

Adjoint sensitivity applications:
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(F / T)T sensitivity to: temperature

(F / q)T specific humidity

(F / a)T cloud cover

(F / qlw)T cloud lwc

(F / qiw)T cloud iwc

• The gradient with respect to y of unity size (i.e., perturbation of radiation fluxes with  1 W.m-2)

is provided to the adjoint of radiation scheme

• Example: sensitivity of the radiation scheme to input variables

(as such sensitivity is well known from previous studies of RT)

where FT is the adjoint of the linear operator F=F/x and F is the nonlinear operator

Adjoint sensitivity as a different tool for the validation of parametrization scheme 
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Sensitivity of one output variable to a number of input variables NVAR prescribed on several 

levels NLEV can be obtained in one run using adjoint technique instead of multiple runs

required by traditional methods (usually ~ NVAR * NLEV)
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Sensitivity of the shortwave upward radiation flux at the TOA w.r.t. specific humidity  [ W.m-2/g.kg-1 ] 
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Examples of adjoint sensitivity for physical parametrization (1)
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Examples of adjoint sensitivity for physical parametrization (2)

shortwave 
radiation 
(OSR)

longwave 
radiation 
(OLR)

Within the range of validity of 

the TL approximation for adjoint of 

the radiation schemes:

• in high-sensitivity regions, a cloud  

fraction perturbation of 0.1 leads to 

an absolute increase of ~1 W m-2 in 

OSR or OLR
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Janisková and Morcrette, 2005



Reading, UK © ECMWF 2015

J/x after 24 hours of “backward” adjoint

integration 

Adjoint sensitivity of a physical aspect to the model control variables 

The time integration of the adjoint model allows the computation of adjoint sensitivities

of any physical aspect (J) inside a target geographical domain to the model control

variables (x) several hours earlier.

Adjoint sensitivities for a European winter storm:

J = mean 3h precipitation accumulation inside    

black box. Sensitivity with respect to 500-hPa temperature

T159L91  Sensitivity units: 0.0001*(mm/day)/K

The dipolar pattern of sensitivities indicates that a strengthening 

of the cross-frontal temperature gradient would result in              

a precipitation increase inside the black box, 24 hours later.

Janisková and Lopez, 2013
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Adjoint sensitivity of forecast error to the initial conditions 

Example: 20100828 at 21:00UTC, L91Dry processes + dry energy norm

All processes (including moist) + dry norm

J kg-1 / (g kg-1)

i.e. to the analysis, J/x, where J is a measure of the forecast error (e.g. energy norm)

Using a more sophisticated adjoint model → more flow-dependent and more realistic sensitivities

Janisková and Lopez, 2013



Reading, UK © ECMWF 2015

• Data assimilation diagnostics – using adjoint model for monitoring sensitivity of the cost

(objective) function J with respect to observations

Adjoint-based technique measuring the observation influence on forecasts

Technique influenced by simplified adjoint model used to carry the forecast error information

backwards → impact of some observations increased when using moist processes

Dry Adjoint    – Dry Norm

Moist Adjoint – Dry Norm

Forecast Sensitivity Observation Impact – FSOI (%)
averaged over 31 cases

positive values 

↓

forecast 

improvement

Janisková and Cardinali, 2015

(Baker & Daley 2000, Langland & Baker 2004, Cardinali & Buizza 2004, 

Morneau et al. 2006, Xu & Lagland 2006, Zhu & Gelaro 2008, Cardinali 2009)
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Physics parameter optimization using 4D-Var

Goal: to adjust the value of (some) physics parameters (PP) by cycling

4D-Var data assimilation (typically over one or two months), under the

constraint of all routinely available observations.

The PPs to be optimized need to be added to the control vector of the

4D-Var data assimilation and its cost function:
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where Bp is the background error covariance matrix for PPs.

Limitations: Only parameters that are present in both the forecast model and the linearized

simplified physics (TL & AD) can be treated in this way.

Discrepancies between the full non-linear physics and the TL & AD physics (used in

the minimization of J ) might lead to sub-optimal results.
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Feasibility test: 4D-Var optimization of solar constant 

T511 L91 4D-Var experiment

Period: Oct-Nov 2012

Evolution of the optimized 

solar constant  as a function 

of 4D-Var cycles with initial 

value:

1500 W m-2

1200 W m-2

reference, 1366 W m-2

4D-Var is able to converge towards the reference value after a couple of months.

• New prospects for the objective optimization of some parameters of the model’s physics.

• But to be tested whether the method successful when dealing with parameters:

‒ more uncertain or less well constrained by the observations,

‒ associated with more non-linear processes (e.g. condensation)

Lopez, 2013
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• Positive impact from including physical parametrization schemes into the linearized

model has been demonstrated.

Summary (1)

• Physical parametrizations become important components in current variational

data assimilation systems:

‒ positive impact on analysis and subsequent forecast

‒ enabling to assimilate observations related to physical processes (rain, clouds, ...)

• Including linearized physical parametrization schemes into singular vector

computations can lead to:

‒ more of the SVs structures associated directly with some atmospheric processes

‒ better spread in EPS

• Adjoint of physical processes used for sensitivity studies can provide:

‒ more flow-dependent and more realistic sensitivities

‒ different tool for the validation of parametrization schemes

(sensitivity to all governing parameters obtained at minimal computational cost)

‒ diagnostic tool for:

‒ analyzing sensitivity of a forecast error to initial conditions

‒ monitoring the observation impact on short-range forecasts



Reading, UK © ECMWF 2015

• The linearized physics provides new prospects for the objective optimization of 

some physics parameters, but:

‒ limited to parameters present in both the forecast model and the linearized physics

‒ uncertain for parameters associated with more non-linear processes or not enouh 

constrain by observations

Summary (2)

BUT

Certain requirements/constraints/limitations must be considered.

• Linearity of physical parametrization/observation operator, since nonlinearities could:

‒ cause convergence problems in variational assimilation based on strong assumption 

that the analysis is performed in quasi-linear framework

‒ lead to spurious unstable modes in computation of singular vectors

– limit the relevance and usefulness of adjoint sensitivity

• Acuracy of physical parametrization/observation operator:

‒ to provide realistic enough sensitivities and model equivalent to observations

• Computational cost for practical applications


