

High resolution forecasts of summer convection

or

Uncertainty analysis of summer convection over land using an ensemble of high-resolution forecasts within the project HD(CP)²

Martin Köhler, Daniel Klocke, Tobias Göcke, DWD

Physical processes in present and future large-scale models

ECMWF Seminar 1.-4. September 2015

HD(CP)2 proposal, steering committee: Stevens, Crewell, Jones, Biercamp, Burkhardt, Seifert, Macke, Simmer 2011

Between the resolution of typical GCMs and **100m** is the "grey" zone where parameterisation is hard to achieve / understand.

HD(CP)² High definition modelling on a limited domain

HD(CP)2 proposal, steering committee: Stevens, Crewell, Jones, Biercamp, Burkhardt, Seifert, Macke, Simmer 2011

A resolution of **100 meter** implies automatically a regional domain for current computer power. Bonus: Germany has a dense network of observation stations / supersites.

Multiscale cloud / precipitation problem

- 100 people (50 FTE +)
- 19 institutes / universities across Germany
- Funded by BMBF

JUQUEEN BlueGene/Q Hi/Q club 458,752 cores (1,835,008 threads) 100m LES over Germany

SuperMUC (Intel Xeon Phi) 65536 cores 100m LES over Germany

ECMWF (CRAY/Intel) 92160 threads 5km global, 20971520 grid cells, 2.5h

Figure 3: Strong scaling results of the workshop codes with results from existing High-Q Club members included in light grey.

HOPE: HD(CP)² Observational Prototype Experiment (April / May 2013):

Many (German) measurements-centres meet for an intensive measurement campaign

Hours since 24.04.2013 00UTC

0.005 0.0057 0.0064 0.0071 0.0078 0.0085

kg/kg

25.04.2013 12 UTC

25.04.2013 12 UTC

Coordinated approach to tackle the cloud/precipitation problem

- Build a model (flexible, 100m resolution) based on ICON
- Organize data for evaluation (create German ARM site)
- Use this model/data framework to generate new ideas

Final workshop 15-19 February 2016: hdcp2.eu (abstracts 19. Sept 2015)

- uncertainty evolution
 - correlation length scale increase with time given small initial uncertainty?
 - growth rate?
 - upward energy cascade from convective scale?
- physics of convective instability?
- benefit to weather forecasting
 - NWP at O(100m) resolution?
 - How to select growing convective modes (initial conition?
 - How best to design stochastic physics?

Rodwell et al 2013: occasional poor forecasts

584 Busts in ERA Interim - Composite

Mean initial (6h) CAPE anomaly for Day 6 busts over Europe 5% level significance: bold color

- Increased initial CAPE over USA correlates with EU busts
- Best and worst ensemble member have same initial perturbation with opposite sign
- MCS slow synoptic evolution
- MCS requires parameterisation

Day 6 forecast skill over Europe

Zhang et al 2007: 3 stages of error growth

Perturbation: 0.2K

- Stage 1: errors groth fast on small scales due to convective instability and latent heat release, but saturate quickly
- Stage 2: perturbations expand in spatial scale and come into geostrophic balance
- Stage 3: balanced perturbations grow on synoptic scales in presence of baroclinic instability

Hohenegger and Schär 2007a: predictability a synoptic and cloud-resolving scales

RMS difference (pert-control)

TABLE I. Typical time scales associated with medium-range synoptic-scale (ECMWF) and short-range cloud-resolving (LM) simulations.

	Lead time	Lead time Doubling time		Ratio Tangent-linear time		Ratio
	T _{lead}	T _d	T_{lead}/T_{d}	T _{lin}	$T_{\rm lead}/T_{\rm lin}$	T_{lin}/T_d
ECMWF	240 h	40 h	6	54 h	4.4	1.35
LM	24 h	4 h	6	I.5 h	16	0.38

- Error growth of convective systems is 10 times larger versus synoptic systems
- Tangent-linear time drops another factor 3 for convective systems (strong non-linearity)

Growth [h]	S	М	L	S wet	S dry
Stage 1	0.61	0.44	0.53	0.34	0.70
Stage 2	4.7	5.5	6.4	3.5	5.1
Stage 3	44	17	12	290	39

Difference vertical wind (dark blue and red)

15 UTC 20 July 2007, plt = 6 h

Geopotential: lines, Precip: light blue

Stage 1:

Latent heat main source of fast growth

Stage 2: Upscale energy cascade to balance

time-scale for gravity wave to cross Rossy radius of deformation: 7.8h

Stage 3: spread in Z500

- 60h, 2.8km, dT=0.01K: 15 m²s⁻²
- 6h ECMWF:
- 45 m²s⁻²

- COSMO 2.8km initial and boundary conditions
- ICON nest: region around Germany
 - 1249m 10s / 2s
 - 625m 5s/1s
 - 312m 2.5s / 0.5s time step: adv / dyn
- 150 levels, top 21 km
- perturbation at 12UTC:
 - T' < 0.01K
 - Level 150-120 (1500m)

LWP control simulation

14UTC 25.4.2013

WVP diff between two simulations

T diff between two simulations: 48.5N cross-section

14UTC 25.4.2013

Q_I difference after 4 hours

T diff between two simulations

time

U, V, W, T, Q diff between two simulations

time

time

$RMSE(T_{pert}-T_{ctrl})$

$(T_{pert}-T_{ctrl})^2$

T diff spectra (vertical mean)

1249m resolution

312m resolution

- Resolution O(1000m) underestimates convective error growth rate
- Convective error growth (Zhang stage 1) has three phases
 - 5min: fast upscale cascade of initial grid-scale uncertainty (maybe by sound and gravity waves)
 - **5min-1hour**: convective growth at scales of 1-10km
 - 1-6hours: upward error growth to scales of 100km (gravity waves)

• Future Work: Anvil (ICON-LES, ICON parameterized – macro/micro-scales)

1	21000.000	419.907	41	11184.810	182.144	81	5206.884	119.470	121	1404.662	69.617
2	20580.093	359.250	42	11002.666	180.183	82	5087.414	118.164	122	1335.045	68.324
3	20220.842	337.152	43	10822.483	178.254	83	4969.251	116.865	123	1266.721	67.019
4	19883.690	322.457	44	10644.229	176.354	84	4852.386	115.573	124	1199.702	65.703
5	19561.233	311.208	45	10467.876	174.482	85	4736.813	114.287	125	1133.999	64.373
6	19250.025	301.972	46	10293.394	172.637	86	4622.526	113.008	126	1069.626	63.029
7	18948.053	294.062	47	10120.757	170.818	87	4509.518	111.735	127	1006.596	61.670
8	18653.991	287.096	48	9949.939	169.025	88	4397.783	110.467	128	944.926	60.293
9	18366.896	280.839	49	9780.914	167.255	89	4287.317	109.205	129	884.634	58.897
10	18086.057	275.135	50	9613.659	165.509	90	4178.112	107.947	130	825.737	57.479
11	17810.922	269.876	51	9448.150	163.785	91	4070.165	106.695	131	768.258	56.039
12	17541.046	264.983	52	9284.365	162.083	92	3963.470	105.447	132	712.219	54.572
13	17276.063	260.399	53	9122.282	160.402	93	3858.023	104.203	133	657.647	53.077
14	17015.664	256.077	54	8961.880	158.740	94	3753.820	102.963	134	604.570	51.550
15	16759.587	251.983	55	8803.140	157.099	95	3650.857	101.726	135	553.020	49.987
16	16507.604	248.087	56	8646.041	155.475	96	3549.131	100.493	136	503.033	48.384
17	16259.517	244.367	57	8490.566	153.870	97	3448.638	99.262	137	454.648	46.736
18	16015.150	240.804	58	8336.695	152.283	98	3349.376	98.034	138	407.912	45.037
19	15774.345	237.382	59	8184.412	150.712	99	3251.342	96.809	139	362.876	43.278
20	15536.964	234.086	60	8033.700	149.158	100	3154.533	95.585	140	319.598	41.450
21	15302.878	230.906	61	7884.542	147.619	101	3058.948	94.363	141	278.147	39.543
22	15071.972	227.832	62	7736.923	146.096	102	2964.585	93.142	142	238.605	37.540
23	14844.140	224.855	63	7590.827	144.588	103	2871.443	91.922	143	201.064	35.423
24	14619.285	221.967	64	7446.239	143.093	104	2779.521	90.702	144	165.641	33.165
25	14397.318	219.162	65	7303.146	141.613	105	2688.819	89.483	145	132.476	30.726
26	14178.157	216.434	66	7161.533	140.146	106	2599.336	88.263	146	101.750	28.051
27	13961.723	213.777	67	7021.387	138.692	107	2511.073	87.043	147	73.700	25.044
28	13747.946	211.188	68	6882.696	137.250	108	2424.030	85.822	148	48.655	21.534
29	13536.758	208.661	69	6745.445	135.820	109	2338.208	84.599	149	27.121	17.121
30	13328.096	206.194	70	6609.625	134.403	110	2253.610	83.374	150	10.000	10.000
31	13121.902	203.782	71	6475.222	132.996	111	2170.236	82.147	151	0.000	0.000
32	12918.120	201.423	72	6342.226	131.600	112	2088.089	80.917			
33	12716.698	199.113	73	6210.626	130.215	113	2007.172	79.683			
34	12517.585	196.850	74	6080.411	128.840	114	1927.490	78.445			
35	12320.736	194.631	75	5951.571	127.475	115	1849.044	77.203			
36	12126.104	192.455	76	5824.097	126.119	116	1771.841	75.956			
37	11933.649	190.320	77	5697.978	124.772	117	1695.885	74.703			
38	11743.329	188.222	78	5573.206	123.434	118	1621.182	73.443			
39	11555.107	186.162	79	5449.772	122.105	119	1547.739	72.176			
40	11368.946	184.136	80	5327.667	120.783	120	1475.563	70.901			