Fast radiative transfer models and the representation of clouds

Robin Hogan, ECMWF

Contributions from: Sophia Schäfer and Jon Shonk (University of Reading) Howard Barker (Environment Canada) Alessio Bozzo and Shoji Hirahara (ECMWF) and numerous others

©ECMWF

Overview

- From Maxwell to the two-stream equations
- The challenge of cloud structure
- Representing 3D effects
- Mitigating errors due to calling radiation infrequently in time and space
- Reducing the number of spectral intervals
- Outlook

What does a radiation scheme do?

The four components of a radiation scheme

Codes should be modular, allowing components to be changed independently

©ECMWF

ECMWF

Theories of light propagation and scattering

Optical phenomena explained by Maxwell's equations

Need quantum mechanics to explain emission and absorption

- All other atmospheric optics explained by electromagnetic radiation exciting a dipole in a dielectric material which then re-radiates
 - Described by Maxwell's curl equations + Newton's 2nd law for bound charges

The Electromagnetic Weather Forecast

Non-atmospheric examples

Many more animations at <u>www.met.rdg.ac.uk/clouds/maxwell</u> (interferometer, diffraction grating, dish antenna, clear-air radar, laser...)

©ECMWF

Slide 8

From Maxwell...

...to the two-stream equations

Maxwell's equations in terms of fields $\mathbf{E}(\mathbf{x}, t)$, $\mathbf{B}(\mathbf{x}, t)$

- **Reasonable assumptions:**
 - Ignore polarization
 - Ignore time-dependence (sun is a continuous source)
 - Particles are randomly separated so intensities add incoherently and phase is ignored
 - No diffraction around features larger than individual particles

- Unreasonable assumptions:
 - Diffuse radiances in all directions represented by only 2 discrete directions
 - Atmosphere within a model _ gridbox is horizontally infinite and homogeneous
 - Details of the phase functions represented by one number, the asymmetry factor

1D radiative transfer in terms of two monochromatic fluxes $F^{\pm}(Z,v)$

©ECMWF

Two-stream equations (shortwave)

Direct downwelling: $\frac{dF^{0}}{dz} = \frac{\beta_{e}}{\mu_{0}}F^{0}$ Diffuse upwelling: $\frac{dF^{+}}{dz} = \beta_{e}(-\gamma_{1}F^{+} + \gamma_{2}F^{-} + \gamma_{3}F^{0})$ Diffuse downwelling: $\frac{dF^{-}}{dz} = \beta_{e}(\gamma_{1}F^{-} - \gamma_{2}F^{+} - \gamma_{4}F^{0})$

Or write in matrix form:

$$\frac{d}{dz}\mathbf{f} = \mathbf{\Gamma}\mathbf{f} \quad \text{where} \quad \mathbf{f} = \begin{pmatrix} F^0 \\ F^+ \\ F^- \end{pmatrix}$$

In the longwave, no F⁰ term and add Planck function on right-hand-side

©ECMWF

 $Z = Z_1$

Solving the two-stream equations in a single layer

• For a homogeneous layer of thickness z_1 the general solution is:

 $\mathbf{f}(z_1) = \mathrm{e}^{\Gamma z_1} \mathbf{f}(0)$

where $e^{\Gamma z_1}$ is a matrix exponential (a 3x3 matrix)

In the 3x3 case, analytic formulas exist for each element, from which can get diffuse reflection R and transmission T of layer (Meador & Weaver 1980)

Solution for two-level atmosphere

Solve the following tri-diagonal system of equations

$$\begin{pmatrix} 1 & & & \\ 1 & -R_1 & -T_1 & & \\ & -T_1 & -R_1 & 1 & & \\ & & 1 & -R_2 & -T_2 & & \\ & & & -T_2 & -R_2 & 1 & \\ & & & & 1 & -\alpha_s \end{pmatrix} \begin{pmatrix} F_{0.5}^+ \\ F_{0.5}^- \\ F_{0.5}^- \\ F_{1.5}^- \\ F_{1.5}^- \\ F_{2.5}^- \\ F_{2.5}^- \end{pmatrix} = \begin{pmatrix} S_0^- \\ S_1^+ \\ S_1^- \\ S_1^- \\ S_2^- \\ S_2^- \\ S_s^+ \end{pmatrix}$$
Top-of-atmosphere

- Efficient to solve and simple to extend to more layers
 - Can't use Thomas's algorithm due to possible zeros on the diagonal
- Solution to this system is exactly equivalent to the *adding method*:
 - Gaussian elimination = moving up through atmosphere & computing total albedo below each level
 - Backsubstitution ≡ moving down through atmosphere & computing fluxes from these total albedos

ECMWF

How do we compute how this interacts with radiation?

Plane-parallel, maximum-random overlap

Most models circa 2000

Model variables needed: cloud fraction, water content
 Reflection & transmission computed for clear & cloudy regions separately
 Fluxes merged at layer interfaces according to cloud fraction

Realistic overlap

Increases cloud cover and hence cloud radiative effect

Extra input: overlap decorrelation length from cloud radar ~2 km
 Ground-based (Hogan & Illingworth 2000, Mace & Benson-Troth 2002)
 CloudSat (Barker 2008, Shonk et al. 2010)

Global impact of cloud inhomogeneity and overlap

Fix overlap and inhomogeneity

- Fixing just horizontal structure (blue to red) would overcompensate the error
- Fixing just overlap (blue to cyan) would increase the error
- Need to fix both overlap and horizontal structure

Shonk & Hogan (2010)

CMWF

©ECMWF

Monte-Carlo Independent Column Approximation (McICA) – Pincus et al. (2005)

Info required similar to Tripleclouds but computationally a little faster
 Use of stochastic cloud generator leads to some noise in fluxes
 Now used in many (most?) global weather and climate models

Full Monte Carlo (being investigated by Barker et al.)

 "It's better to solve the right problem approximately than the wrong problem exactly," or "random errors are better than biases."

Use 3D cloud distribution generated by a stochastic model in each gridbox
 How many light rays are needed for random errors to be tolerable? 500?
 NWP models can tolerate random errors less than climate models Monte Carlo at least provides good benchmark for approximate schemes

Shortwave errors due to 2-stream and 1D approximations

Reducing 2-stream errors

- Main problem is in optically thin clouds
 - Single scattering dominates, so full details of phase function needed to predict reflection/transmission at all sun angles
- Almost all 2-stream models use the highly simplified δ-Eddington phase function (including the IFS)

Mie phase function δ-Eddington phase function

- 4 streams much more accurate (twice the cost)
- Räisänen (2002) significantly reduced error by tuning the 2-stream γ coefficients separately for droplets, ice crystals and aerosols

Errors due to neglecting 3D effects

Shortwave side illumination

- Strongest when sun near horizon
- Increases chance of sunlight intercepting cloud

- Shortwave side escape
 - Strongest when sun near zenith
 - Forward scattering leads to more sunlight reaching the ground

Longwave effect

- Radiation can now be emitted from the side of a cloud
- 3D effects can increase surface cloud forcing by a *factor of 3* (for an isolated, optically thick, cubic cloud in vacuum!)

SPARTACUS (Hogan & Shonk 2014)

"Speedy algorithm for radiative transfer through cloud sides"

Effective cloud diameter – need more observations!
 Stratocumulus from MODIS: ~10 km (Jensen et al. 2008)
 Cumulus in cloud-resolving models: ~500 m (Schaefer)
 Cumulonimbus: ~8 km (Stein et al. 2015)

Extending the two-stream equations

More diffuse streams, e.g. 4

 Rates of exchange between streams can be calculated from the scattering phase function Transport through cloud sides

 Exchange between regions calculated from *effective cloud diameter* (Hogan & Shonk 2014)

Region b (cloudy)

- Use 3 regions (2 cloudy) to capture cloud inhomogeneity (Shonk & Hogan 2008)
- In both cases we have the same equation and solution as before:

$$\frac{d}{dz}\mathbf{f} = \mathbf{\Gamma}\mathbf{f} \longrightarrow \mathbf{f}(z_1) = \mathrm{e}^{\mathbf{\Gamma}z_1}\mathbf{f}(0)$$

Region a (clear)

Extending the two-stream equations

Multi-layer problem is now *block-tridiagonal*, so still fairly efficient to solve

$$\begin{pmatrix} \mathbf{I} & & & & \\ \mathbf{I} & -\mathbf{R}_{1} & -\mathbf{T}_{1} & \\ & -\mathbf{T}_{1} & -\mathbf{R}_{1} & \mathbf{I} & \\ & & \mathbf{I} & -\mathbf{R}_{2} & -\mathbf{T}_{2} & \\ & & -\mathbf{T}_{2} & -\mathbf{R}_{2} & \mathbf{I} \\ & & & \mathbf{I} & -\alpha_{s} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{0.5}^{+} \\ \mathbf{f}_{0.5}^{-} \\ \mathbf{f}_{1.5}^{+} \\ \mathbf{f}_{1.5}^{-} \\ \mathbf{f}_{1.5}^{-} \\ \mathbf{f}_{2.5}^{+} \\ \mathbf{f}_{2.5}^{-} \\ \mathbf{f}_{2.5}^{-} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{0}^{-} \\ \mathbf{s}_{1}^{+} \\ \mathbf{s}_{1}^{-} \\ \mathbf{s}_{2}^{+} \\ \mathbf{s}_{2}^{-} \\ \mathbf{s}_{s}^{+} \end{pmatrix}$$

©ECMWF

Broadband shortwave SPARTACUS vs Monte Carlo

- SPARTACUS coded up in Fortran 90 with RRTM-G for gas absorption
- Compare to full 3D Monte Carlo calculation from MYSTIC in cumulus
 - Thanks to Carolin Klinger & Bernhard Mayer, LMU Munich
 - Mean of 4 solar azimuths, error bar indicates standard deviation due to sun orientation

- Good match!
- 3D effect up to 20 W m⁻², similar to inhomogeneity effect
- Large difference in direct surface flux at large solar zenith angle
 - SPARTACUS direct fluxes agree better with ARM observations

©ECMWF

ECMWF

Towards a global estimate of the impact of 3D effects

- Instantaneous cloud radiative forcing calculated by applying SPARTACUS to one ERA-Interim cloud field
- 3D effect is appreciable!
- Next step: annual mean

Surface cloud radiative forcing 00 UTC 1 June 2013 90 0 -10045 -atitude (°N) -200 -300 2 -400-45 -500-90 -60045 90 135 180 225 270 315 360 Longitude (°E) Surface net 3D effect 00 UTC 1 June 2013 Solar zenith angle 90 20 10 -atitude (°N) W m⁻² 0 -45 -10-90 -20 225 360 135 80 270 45 90 Longitude (°E) High sun: *Night-time:* Low sun: positive LW effect negative SW effect positive SW effect ECMWF **©ECMWF**

ECMWF Annual Seminar, September 2015

Are we using computer time wisely?

Radiation is an integral:	is an integral:
---------------------------	-----------------

$$\overline{F^{\uparrow\downarrow}(z)} = \int_{\Lambda t} \int_{\infty} \int_{\Lambda \mathbf{x}} \int_{2\pi} I(z, \mathbf{\Omega}, \mathbf{x}, \nu, t) d\mathbf{\Omega} d\mathbf{x} d\nu dt$$

	Dimension	Typical number of quadrature points	How well is this dimension known?	Consequence of poor resolution
	Time	1 every 3 hours	At the timestep of the model	Changed climate sensitivity (Morcrette 2000); diurnal cycle (Yang & Slingo 2001)
	Angle	2 (sometimes 4)	Well (some uncertainty on ice phase functions)	±6-8 W m ⁻² (Stephens et al. 2001, Barker et al. 2015)
	Space	2 (clear+cloudy)	Poorly (clouds!)	Up to a 20 W m ⁻² long-term
But only every 6 th gridpoint!		McICA: equal to spectral intervals		bias (Shonk and Hogan 2010)
	Spectrum	70-260	Very well (HITRAN database)	Incorrect climate response to trace gases?

©ECMWF

Approximate radiation updates

Hogan & Bozzo (JAMES 2015)

ECMWF

 IFS can have large temperature errors at coasts due to running radiation at coarser resolution

- New scheme updates longwave and shortwave fluxes every timestep and gridpoint in response to surface albedo and skin temperature
- Fixes errors due to spatial interpolation at a cost of only around 2% that of the radiation scheme

©ECMWF

Climate errors due to infrequent calls to radiation scheme

- All but one operational IFS configurations call radiation scheme only every 3 h
- At dawn & dusk, sun angle at centre of 3-h period too shallow: absorption too high
- Stratosphere too warm by 3-5 K (compared to running radiation scheme every timestep)

 Fix by averaging cosine of solar zenith angle over *sunlit part* of radiation timestep

Hogan & Hirahara (ECMWF memo 2015)

ECMWF Annual Seminar, September 2015

Temperature difference (K)

Slide 30

How do we integrate across the spectrum?

Planck function

Water vapour spectrum

Water vapour spectrum

Planck function

Divide into bands

Wavelength (µm) 0.5 30 15 10 9 8 6 5 7 Spectral irradiance (W m⁻² (cm⁻¹)⁻¹) In each band, sort 0.4 absorption spectrum and average the Planck function 0.3 More conducive to 0.2 numerical integration Lacis & Oinas (1991) 0.1 0 500 1000 1500 2000 2500 Wavenumber (cm⁻¹) Molecular absorption cross-section (cm^2) 10⁻¹⁶ 10⁻¹⁸ 10⁻²⁰ 10⁻²² • 10⁻²⁴ 1 10⁻²⁶ • 10⁻²⁸, 500 1000 1500 2000 2500 Wavenumber (cm⁻¹)

The correlated k-distribution method

Planck function

Water vapour spectrum

The correlated k-distribution method Wavelength (µm) 0.5 30 15 10 9 8 6 7 5 Spectral irradiance (W m⁻² (cm⁻¹)⁻¹) Discretize sorted absorption 0.4 coefficients into 2-16 intervals in each band 0.3 RRTM-G needs 140 "g-points" • (monochromatic calculations) 0.2 for longwave when all gases considered 0.1 0 500 1000 1500 2000 2500 Wavenumber (cm⁻¹) 10^{-16} 10⁻¹⁸ 10⁻²⁰

Planck function

Full-spectrum correlated-k (FSCK) method

Planck function

Water vapour spectrum

Full-spectrum correlated-k (FSCK) method

Full-spectrum correlated-k (FSCK) method

Planck function

Water vapour spectrum

Performance of longwave FSCK on test profiles

Hogan (2010)

©ECMWF

Slide 38

Summary and outlook

- Representation of cloud structure and overlap in radiation schemes is much improved compared to 15 years ago
 - McICA is now the de facto standard for radiation schemes in weather and climate models
- Look for opportunities to improve accuracy with no increase in cost
 - "Tuned" 2-stream method; better continuum absorption models
 - Approximate updates to fluxes to mitigate errors due to radiation calls infrequent in time and space
- Opportunities to represent new physical processes with modest cost increase
 - 3D effects with SPARTACUS
- Large number of spectral intervals limits what we can afford in other areas
 - Faster implementation of RRTM-G, e.g. on GPUs
 - Alternative approaches such as FSCK?
- Plans for a new ECMWF radiation scheme
 - Modular: solver and cloud, aerosol & gas optical models can be interchanged independently
 - Open source off-line version to be released
- Remember that radiative fluxes are only as good as the cloud and aerosol data coming from the host model!

©ECMWF

Building blocks of atmospheric radiation

- **1.** Emission and absorption of quanta of radiative energy
 - Governed by quantum mechanics: the Planck function and the internal energy levels of the material
 - Responsible for complex gaseous absorption spectra
- 2. Electromagnetic waves interacting with a dielectric material
 - An oscillating dipole is excited, which then re-radiates
 - Governed by Maxwell's equations + Newton's 2nd law for bound charges
 - Responsible for *scattering*, *reflection* and *refraction*

The 3D radiative transfer equation

 This describes the radiance *I* in direction Ω (where the position and frequency dependence of all variables is implicit):

$$\Omega \cdot \nabla I(\Omega) = -\beta_e I(\Omega) + \beta_s \int_{4\pi} p(\Omega, \Omega') I(\Omega') d\Omega' + S(\Omega)$$
Loss by absorption or scattering adiation scattering adiation scattering adiation scattered from a single of the maximum scatter directions from the mission of the scattering adiation is upstream.

$$I(\Omega) + dI(\Omega)$$

Spo rep rac

Forecast skill from temporal frequency of radiation calls

- Forecast skill improves if radiation called every 1 h rather than every 3 h
 - Half of this improvement is due to response of radiation fields to surface temperature; can be represented by keeping 3-h radiation but using approximate radiation updates in between (Hogan & Bozzo 2015)
 - Half is due to interaction with clouds
- Almost half spectral intervals important only in stratosphere and mesosphere
 - Could run troposphere channels more frequently to capture response to fast changing surface and clouds (Manners et al. 2009)

