#### **UNIVERSITY OF TWENTE.**

# Application of remote sensing data in global evapotranspiration (ET) estimate

#### Xuelong Chen<sup>1</sup>, Bob Su<sup>1</sup> Yaoming Ma<sup>2</sup> <u>x.chen@utwente.nl</u>

Water Resources Department, University of Twente, The Netherlands

2 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China









# **CONTENTS**

I. Why the remote sensing data is important for global land surface energy balance and evapotranspiration (ET) studies?

> 2. Applications of satellite data in ET estimate

**3. Conclusions** 

# ET produced by land surface process model and reanalysis data

|         | Method                                     | Spatial resolution | Temporal resolution |
|---------|--------------------------------------------|--------------------|---------------------|
| GSWP-2  | Land surface model                         | ≈1 deg.            | 6 hours             |
| GLDAS   | Land surface<br>model&data<br>assimilation | ≈0.25 deg.         | 3 hours             |
| ERA-int | Reanalysis                                 | ≈0.125 deg.        | 3 hours             |
| NCEP    | Reanalysis                                 | ≈1.25 deg.         | 6 hours             |
| MERRA   | Reanalysis                                 | ≈0.5 deg.          |                     |
| JRA-25  | Reanalysis                                 | ≈1.25 deg.         | 6 hours             |



### Remote sensing based Global ET product

|              | Algorism                                        | Input dataset                                                                                                                                      | Grid size    | Temporal resolution | Time span | References                     | Data source                                             |
|--------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------|--------------------------------|---------------------------------------------------------|
| MOD16-<br>ET | Penman-<br>Monteith                             | daily temperature,<br>actual vapor pressure,<br>solar radiation,<br>LAI, NDVI, and LST                                                             | 1 km         | Daily               | 2000-2011 | <u>Mu et al.</u><br>(2007)     | GMAO,<br>MODIS                                          |
| Zhang-<br>ET | PM of<br>Vegetation +<br>PM Soil<br>evaporation | daily temperature,<br>Net radiation,<br>NDVI,                                                                                                      | 8 km         | monthly             | 1983-2006 | <u>Zhang et</u><br>al. (2010)  | NCEP/NCAR,<br>GEWEX SRB,<br>GIMMS                       |
| GLEAM        | Priestley &<br>Taylor                           | Net Radiation,<br>Precipitation,<br>Air temperature,<br>Vegetation optical depth,<br>Snow water equivalents,<br>Soil Moisture,<br>Skin Temperature | 0.25<br>deg. | daily               | 1984-2007 | <u>Miralles et</u><br>al. 2011 | GEWEX SRB,<br>CMORPH<br>NSIDC,<br>ISCCP,<br>TMMI+AMSR-E |

#### 2. Applications of satellite data in evapotranspiration estimate

- SEBS model introduction
- CASE1: Landsat TM/ETM used in mountainous area
- CASE2: MODIS LST used in China landflux and ET
- CASE3: Remote sensing data applied in Global ET



# **SEBS model equations**

•  $Rn = (1 - \alpha) SWD + LWD - LWU$ 

**Radiation balance** 

• Rn = G0 + H + LE

**Energy balance** 

• 
$$H = u_* \rho C_p (\theta_0 - \theta_a) \left[ \ln \left( \frac{z - d}{z_{0h}} \right) - \Psi_h \left( \frac{z - d}{L} \right) + \Psi_h \left( \frac{z_{0h}}{L} \right) \right]^{-1}$$
MOST

$$G_0 = R_n \cdot \left[ f_c \cdot \Gamma_c + \left( 1 - f_c \right) \cdot \Gamma_s \right]$$



Su et al. 2002

# Heat roughness length parameterization



Chen et al. JAMC 2013

UNIVERSITY OF TWENTE

Fig.2. Diurnal variations of the excess resistance to heat transfer  $kB^{-1}$  of Anduo Station and NPAM Station.

#### CASE 1: A land surface energy balance study using Landsat



#### **CASE2: MODIS LST used in China land ET estimate**



#### Table 1. Input data sets used for calculating China land energy fluxes

| Variables      | Source               | Temporal   | Availability | Domain     | Spatial    | Method        |
|----------------|----------------------|------------|--------------|------------|------------|---------------|
|                |                      | resolution |              |            | Resolution |               |
| SWD            | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Satellite&Rea |
|                |                      |            |              |            |            | nalysis       |
| SWU            | ITPCAS&GlobAlbedo    | 3 hours    | 2000-2010    | China land | 0.1 deg.   | Satellite&Rea |
|                |                      |            |              |            |            | nalysis       |
| LWD            | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Satellite&Rea |
|                |                      |            |              |            |            | nalysis       |
| LWU            | MOD11C3              | 1 month    | 2000-pre.    | China land | 0.05deg.   | Satellite     |
| Та             | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Reanalysis    |
| Q              | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Reanalysis    |
| Ws             | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Reanalysis    |
| Р              | ITPCAS               | 3 hours    | 1979-2010    | China land | 0.1 deg.   | Reanalysis    |
| LST            | MOD11C3&MYD11C3      | 1 month    | 2000-pre.    | Global     | 0.05deg.   | Satellite     |
| h <sub>c</sub> | GLAS&SPOT VEGETATION | 1 month    | 2000-2012    | China land | 0.01deg.   | Satellite     |
| α              | GlobAlbedo           | 1 month    | 2000-2010    | Global     | 0.05deg.   | Satellite     |
| NDVI           | SPOT VEGETATION      | 10 days    | 1998-2012    | Global     | 0.01deg.   | Satellite     |
| LAI            | MOD15A2&<br>MCD15A2  | 8 days     | 2000-2012    | Global     | 0.01deg.   | Satellite     |

# MODIS monthly LST

2000-1



# GlobAlbedo over China landmass

Year=2002,Month=1



#### **GlobAlbedo performance at 21 flux stations in China**



Red square- GlobAlbedo, Error bar- in-situ measurement

Ū

Û

0.2

0.1

- allii:

n

990.HTT

n

# Forest canopy height information



Simard, et. al., 2011, Geoscience Laser Altimeter System (GLAS) aboard ICESat

# Canopy height (forest + short canopy)



Yearly average maps of (a) downward shortwave radiation (SWD), (b) downward longwave radiation (LWD), (c) upward shortwave radiation (SWU), (d) upward longwave radiation (LWU) from 2000 to 2010.



#### Seasonal average maps of sensible heat flux (H), (a) Mar-May, (b) Jun-Aug,(c) Sep-Nov, (d) Dec-Feb



# Maps of multiyear (2000-2010) mean of (a) sensible heat flux (H), (b) latent heat flux (LE), (c) net radiation (Rn), (d) ground heat flux (G0)



#### **CASE3:** Remote sensing data applied in Global ET



year= 2001,month= 01,NDVI



**MODIS NDVI** 



**MODIS Emissivity** 

GlobAlbedo, year= 2001,month= 01





GlobAlbedo, year= 2001,month= 01



# Global monthly land surface fluxes derived from MODIS products



# Global monthly ET(mm) in 2008



# Global ET product

|              | Algorism                                        | Input dataset                                                                                                                                                               | Grid<br>size | Temporal<br>resolutio<br>n      | Time<br>span  | References                     | Data<br>source                                                 |
|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|---------------|--------------------------------|----------------------------------------------------------------|
| MOD16-<br>ET | Penman-<br>Monteith                             | daily temperature,<br>actual vapor pressure, solar<br>radiation,<br>LAI, NDVI, and LST                                                                                      | 1 km         | Daily                           | 2000-<br>2011 | <u>Mu et al.</u><br>(2007)     | GMAO,<br>MODIS                                                 |
| Zhang-<br>ET | PM of<br>Vegetation +<br>PM Soil<br>evaporation | daily temperature,<br>Net radiation,<br>NDVI,                                                                                                                               | 8 km         | monthly                         | 1983-<br>2006 | <u>Zhang et al.</u><br>(2010)  | NCEP/NC<br>AR,<br>GEWEX<br>SRB,<br>GIMMS                       |
| GLEAM        | Priestley &<br>Taylor                           | Net Radiation,<br>Precipitation,<br>Air temperature,<br>Vegetation optical depth,<br>Snow water equivalents,<br>Soil Moisture,<br>Skin Temperature                          | 0.25<br>deg. | daily                           | 1984-<br>2007 | <u>Miralles et al.</u><br>2011 | GEWEX<br>SRB,<br>CMORPH<br>NSIDC,<br>ISCCP,<br>TMMI+A<br>MSR-E |
| Chen-ET      | Surface<br>energy<br>balance                    | Downward/upward<br>shortwave/longwave,albedo, NDVI,<br>FPAR, LAI, canopy height,<br>Air temperature, humidity, pressure<br>wind speed, LST, soil Moisture (ET<br>partition) | 5 km<br>1 km | Monthly<br>Daily (in<br>future) | 2000-<br>2014 | Chen et al.<br>2014            | ERA-I,<br>MODIS,<br>GlobAlbe<br>do,<br>ESA CCI,                |

#### CONCLUSIONS

- Land surface process model is complex and difficulty to be used at global scale.
- Remote sensing provide an easier way for global ET estimation.
- Application of remote sensed dataset in global water and energy studies has several issues need to be addressed in future.



# References

- **Chen, X**., Su, Z., Ma, Y., Yang, K., and Wang, B., **2013**: Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau, *Hydrol. Earth Syst. Sci.*, 17, 1607-1618,doi:10.5194/hess-17-1607-2013
- **Chen X.**, Su, Z., Ma, Y. M., et. al., **2012**: An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau, *Journal of Applied Meteorology and Climatology*,52(3): 623-633
- Chen, X., Su, Z., Ma, Y., Liu, S., Yu, Q., and Xu, Z., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys. Discuss., 14, 14471-14518, doi:10.5194/acpd-14-14471-2014, 2014.
- Su, Z.: The Surface Energy Balance System(SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth System Sciences, 6, 85-99, 2002.

Thank you!

Shares 1

and they want to have have

# 4. Evaluations

Table 2. Flux sites used for the product validation.

|       | Lat[deg]/ | Land cover     | Measurement period  | Elevation (m) | <u>Reference</u>           |
|-------|-----------|----------------|---------------------|---------------|----------------------------|
|       | Lon[deg]  |                |                     |               |                            |
| WJ    | 30.4200N/ | Crop           | Mar 2008 - Aug 2009 | 539 m         | Zhang et al. (2012)        |
|       | 103.5000E |                |                     |               |                            |
| MQ    | 33.8872N/ | Alpine meadow  | Apr 2009 - May 2010 | 3439 m        | <u>Wang et al. (2013</u> ) |
|       | 102.1406E |                |                     |               |                            |
| AL    | 33.3905N/ | Bare soil      | Jul 2010 - Dec 2010 | 4700m         | <u>Ma et al. (2008b</u> )  |
|       | 79.7035E  |                |                     |               |                            |
| BJ    | 31.3686N/ | Alpine grass   | Jan 2008 - Dec 2010 | 4520 m        | <u>Ma et al. (2011</u> )   |
|       | 91.8986E  |                |                     |               |                            |
| MY    | 40.6038N/ | Orchard        | Jan 2008 - Dec 2010 | 350 m         | Liu et al. (2013a)         |
|       | 117.3233E |                |                     |               |                            |
| DX    | 39.6213N/ | Crop           | Jan 2008 - Dec 2010 | 100m          | Liu et al. (2013a)         |
|       | 116.4270E |                |                     |               |                            |
| GT    | 36.5150N/ | Crop           | Jan 2008 - Dec 2010 | 30 m          | Liu et al. (2013a)         |
|       | 115.1274E |                |                     |               |                            |
| YC    | 36.9500N/ | Crop           | Oct 2002 - Oct 2004 | 13 m          | Flerchinger et al. (2009)  |
|       | 116.600E  |                |                     |               |                            |
| DT    | 31.5169N/ | Wetland        | Jan 2005 - Dec 2007 | 5 m           | Zhao et al. (2009)         |
|       | 121.9717E |                |                     |               |                            |
| SACOL | 35.95N/   | Dry land       | Jan 2007 - Dec 2008 | 1965 m        | Huang et al. (2008)        |
|       | 104.133E  |                |                     |               |                            |
| WS    | 36.6488N/ | Winter wheat / | Jan 2006 - Dec 2008 | 30 m          | Lei and Yang (2010a)       |
|       | 116.0543E | summer maize   |                     |               |                            |

# SEBS input and output variables vs measurement at Yucheng station winter wheat and summer maize



#### SEBS input and output variables vs measurement at SACOL station (Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL)



#### SEBS input and output variables vs measurement at Maqu station in the eastern Tibetan Plateau



#### SEBS input and output variables vs measurement at BJ station in the central Tibetan Plateau

