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"Toward Teracomputing” workshop: 1998

Evolution of Algorithms for the Ocean Free

Surface

V. Balaji
SGI/GFDL

ECMWF TeraComputing Workshop
19 November 1998

1
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Teracomputing workshop conclusion: explicit methods
parallelize

Conclusions

Low order models benefit from being formulated in terms of a series of bal-
ance assumptions that reduce the number of prognostic equations. In the
limit, atmospheric and oceanic dynamics could in principle be formulated in
terms of a single prognostic variable, the potential vorticity, and a balance
model that allows us to recover the mass and momentum fields from it.

As we move to higher resolutions, it becomes less easy to justify balance
models, and models tend to solve more independent prognostic equations.

Happily, these are also the algorithms that lend themselves best to parallel
formulation.

In short...
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"Teracomputing" workshop conclusion

Nature does not vectorize, it parallelizes!

22
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"Realizing Teracomputing": high-level expressions of
parallelism

Parallel numerical kernels
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program shallow_water
type(scalar2D) :: eta(0:1)
type(hvector2D) :: utmp, u, forcing
integer tau=0, taup1=1

...
f2 = 1./(1.+dt*dt*f*f)
do l = 1,nt

eta(taup1) = eta(tau) - (dt*h)*div(u)
utmp = u - (dt*g)*grad(eta(taup1)) + (dt*f)*kcross(u) + dt*forcing
u = f2*( utmp + (dt*f)*kcross(utmp) )
tau = 1 - tau
taup1 = 1 - taup1

end do
end program shallow_water
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The jaws of code complexity

common a(); do

load a to vreg
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error = atmos()

multithreaded speculative prefetch
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2004 Workshop: towards PGAS...

The complete memory model
All the above mechanisms of sharing data can be combined into a single uniform memory
model, where an object has two states READ and WRITE. There are three types of access
operations, request, require, and release.

Access State MPI shmem MPI-2 Threads
Request READ irecv status=WAIT post WRLOCK?

wait(status=OK) wait(!WRLOCK)
Require READ wait unbuffer wait lock RDLOCK

put(put=OK)
Release READ unlock RDLOCK

wait(put=OK) start
Request WRITE isend put(buffer) put RDLOCK?

put=WAIT
Require WRITE wait fence complete wait(!RDLOCK)

put(status=OK) lock WRLOCK
Release WRITE unlock WRLOCK

12

Balaji and Numrich (2005), a “uniform memory model” that can be
expressed in CAF and implemented in many underlying parallel
programming models.
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GFDL’s first foray into parallel computing
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Commodity clusters: Beowulf

http://crest.iu.edu/beowulf14/
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History of GFDL Computing

Courtesy Brian Gross, NOAA/GFDL.

V. Balaji (balaji@princeton.edu) State of Play 29 October 2014 12 / 63



The commodity cluster era

Speedups from Moore’s Law: transistor density doubles every 18
months.
Dennard scaling: power density is constant as fab shrinks.
Moore’s Law and Dennard scaling have both reached end of life!
Networks and I/O still ripe for improvement.
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Climate modeling, a computational profile

Intrinsic variability at all timescales from minutes to millennia; all
space scales from microbes to megacontinents.
physics components have predictable data dependencies
associated with grids;
algorithms generally possess weak scalability;
Adding processes and components improves scientific
understanding;
... this complexity implies lots of diagnostic I/O;
New physics and higher process fidelity at higher resolution;
thus, coupled multi-scale multi-physics modeling;
Ensemble methods to sample uncertainty (ICEs, PPEs, MMEs...)

In sum, climate modeling requires long-term integrations of
weakly-scaling, I/O and memory-bound models of enormous
complexity.
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Aerosol indirect effects weaken South Asian monsoon

Cloud-aerosol feedbacks induce a weakening of the Indian monsoon
(Figure courtesy Bollasina et al., Science 2011).
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Carbon sources and sinks

Land carbon fluxes dominant
before 1960; then trend
changes sign.
Fossil fuels dominant
contemporary source.
Ocean uptake scales with
pCO2.

Figure courtesy Ron Stouffer, NOAA/GFDL; pre-publication.
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Hurricane statistics from global high-resolution
atmosphere models

Observed and modeled hurricane tracks from 1981-2005 in a global
50 km (C180) atmospheric model forced by observed SSTs. (Figure 3
from Zhao and Held 2009).
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Interannual variability of hurricane frequency

Interannual variability of W. Atlantic hurricane number from 1981-2005
in the C180 runs. (Figure 7 from Zhao and Held 2009).
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"TC-permitting" models get better with resolution

Intensity distribution improves with resolution. Figure courtesy Gabe
Vecchi.
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"TC-permitting" model FLOR is now used in the
NMME

RT verification: CONUS 
Year 1 Year 2 

T2m 

Prate 

Seasonal forecasting product used in NMME and SPECS. Figure
courtesy Gabe Vecchi.
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Towards global cloud-resolving models

Variable-resolution grid in the FV3 model, courtesy S-J Lin.
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ENSO modulation: is it decadally predictable?

Effects of the proverbial “flap of a butterfly’s wing”...
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The hardware jungle

Upcoming hardware roadmap looks daunting! GPUs, MICs, DSPs,
and many other TLAs. . .

Intel straight line: IvyBridge/SandyBridge, Haswell/Broadwell:
“traditional” systems with threading and vectors.
Intel knight’s move: Knights Corner, Knights Landing: MICs,
thread/vector again, wider in thread space.
Hosted dual-socket systems with GPUs: SIMD co-processors.
BG/Q: CPU only with hardware threads, thread and vector
instructions. No followon planned.
ARM-based systems coming. (e.g with DSPs).
FPGAs? some inroads in finance.
Specialized processors: Anton for molecular dynamics, GRAPE
for astrophysics.
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The software zoo

Exascale using nanosecond clocks implies billion-way concurrency!
It is unlikely that we will program codes with 106− 109 MPI ranks: it will
be MPI+X. Solve for X . . .

CUDA and CUDA-Fortran: proprietary for NVIDIA GPUs. Invasive
and pervasive.
OpenCL: proposed standard, not much penetration.
ACC from Portland Group, now a new standard OpenACC.
Potential OpenMP/OpenACC merging...?
PGAS languages: Co-Array Fortran, UPC, a host of proprietary
languages.
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GFDL between jungle and zoo

GFDL is taking a conservative approach:

it looks like it will be a mix of MPI, threads, and vectors.
Developing a three-level abstraction for parallelism: components,
domains, blocks. Kernels work on blocks and must have
vectorizing inner loops.
Recommendation: sit tight, make sure MPI+OpenMP works well,
write vector-friendly loops, reduce memory footprint, offload I/O.
Other concerns:

Irreproducible computation
Tools for analyzing performance.
Debugging at scale.

Recent experience on Titan, Stampede and Mira reaffirm this
approach.
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Earth System Model Architecture

Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Complexity implies many different instruction sequences; no hotspots.
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Most of FMS is now threaded/vectorized

CM4 on up to 16 threads on gaea. (Figure courtesy Zhi Liang, 16 Sep
2014)
Vectors (AVX) need to be used with care.
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Analysis of dycore architecture for GPU/MIC

Study of code for MPI, threads, vectors. (Chris Kerr, Zhi, Kareem
Sorathia (NASA), Duane Rosenberg (ORNL), Eric Dolven (Cray)...)
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Blocking the dycore for GPU/MIC

Figure courtesy Kareem Sorathia (NASA). Inner loops on i are
retained for vectorization.
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Performance summary: Xeon-SNB vs Xeon-Phi

Phi “speedup” over SNB:
Overall: 0.73
Communication: 0.34
All Computation: 0.86
Top 4: 0.996

Coding issues:

Vector performance very hard to achieve, even with padding halos
for alignment.
Loop unrolling/stripmining/etc needs to be done by hand.
Better performance analysis tools needed.

Courtesy Kareem Sorathia, NASA.
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Results from NIM icosahedral dycore: SNB vs GPU

Courtesy Mark Govett, NOAA/ESRL.
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OpenACC

!$acc parallel num_gangs(ihe-ips+1) vector_length(64) private(flxhi)
!$acc loop gang

do ipn=ips,ihe
!$acc loop vector

do k=1,nvl
flxhi(k) = vnorm(k,edg,ipn)*dp_edg(k,edg,ipn)

Can merge gang and vector on same axis:

do k = kts,kte
!$acc loop gang vector

do i = its,ite
za(i,k) = 0.5*(zq(i,k)+zq(i,k+1))

Courtesy Mark Govett, NOAA/ESRL.
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ECMWF uses PGAS (Co-Array Fortran)

epcc|cresta
Visual Identity Designs

CREST

Overlap Legendre transforms with associated transpositions 

LTINV TRMTOL (MPI_alltoallv) 

LTINV + coarray puts 

OLD 

NEW 

time 

iCAS2013, Annecy 

Co-array assignments become one-sided puts from within threaded
regions.
Courtesy George Mozdzynski, ECMWF.
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CAF results using Cray compiler CCE
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Courtesy George Mozdzynski, ECMWF.
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COSMO: NWP production code using GPUs

T. SchulthessENES HPC Workshop, Hamburg,  March 17, 2014

Speedup of the full COSMO-2 production problem 
(apples to apples with 33h forecast of Meteo Swiss)

!5

Cray XE6 
(Nov. 2011)

Cray XK7 
(Nov. 2012)

Cray XC30 
(Nov. 2012)

Cray XC30 hybrid (GPU) 
(Nov. 2013)

1x

2x

3x

4x

Current production code

1x

2x

3x

4x

1.35x

1.77x

1.67x 3.36x

New HP2C funded code

1.4x

1.49x 2.5x
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COSMO: energy to solution

T. SchulthessENES HPC Workshop, Hamburg,  March 17, 2014

Cray XE6 
(Nov. 2011)

Cray XK7 
(Nov. 2012)

Cray XC30 
(Nov. 2012)

Cray XC30 hybrid (GPU) 
(Nov. 2013)

6.0

4.5

3.0

1.5

Current production code

1.75x

New HP2C funded code

1.41x

1.49x

2.51x

2.64x

6.89x

Energy to solution (kWh / ensemble member)

!6

3.93x

V. Balaji (balaji@princeton.edu) State of Play 29 October 2014 40 / 63



Summary of results in the jungle and zoo

Billion-way concurrency still a daunting challenge for everyone: no
magic bullets anywhere to be found. ECMWF’s PGAS approach is
interesting, and there is at least one production GPU model.
GPU/MIC based systems show nominal ∼10 increase in
flops/socket, but actual performance about 1-2X (thus percent of
peak drops from ∼10% to ∼1%)
Software investment paid back in power savings (Schulthess).
More computational intensity needs to be found: to fit 1018 op/s
within a 1 MW power budget

an operation should be 1 pJ: data movement is ∼10 pJ to main
memory; ∼100 pJ on network!

DARPA: commodity improvements will slow to a trickle within 10
years: go back to specialized computing?
DOE: double investment in exascale.
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GFDL between jungle and zoo

GFDL is taking a conservative approach:

it looks like it will be a mix of MPI, threads, and vectors.
Developing a three-level abstraction for parallelism: components,
domains, blocks. Kernels work on blocks and must have
vectorizing inner loops.
Recommendation: sit tight, make sure MPI+OpenMP works well,
write vector-friendly loops, reduce memory footprint, offload I/O.
Other concerns:

Irreproducible computation
Tools for analyzing performance.
Debugging at scale.

Recent experience on Titan, Stampede and Mira reaffirm this
approach.
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Earth System Model Architecture

Earth System Model

? ?? ?

Atmosphere Land Ice Ocean

? ?
AtmDyn AtmPhy

? ? ?
Rad H2O PBL

? ?
OcnBio OcnClr

? ?
LandBio LandH2O

Extending component parallelism to O(10) requires a different physical
architecture!
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Serial coupling

Uses a forward-backward timestep for coupling.

At+1 = At + f (Ot ) (1)
Ot+1 = Ot + f (At+1) (2)

6
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At+4

Ot+4

At+5
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Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is
unconditionally unstable, the system is strongly damped∗. Answers
vary with respect to serial coupling, as the ocean is now forced by
atmospheric state from ∆t ago.

At+1 = At + f (Ot ) (3)
Ot+1 = Ot + f (At ) (4)
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Massively concurrent coupling
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Ct+2

Rt+2

At+2

Components such as radiation, PBL, ocean biogeochemistry, each
could run with its own grid, timestep, decomposition, even hardware.
Coupler mediates state exchange.
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Traditional coupling sequence

Radiation timestep much longer than physics timestep.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Concurrent radiation coupling sequence

Physics and radiation share memory. Radiation executes on physics
timestep from lagged state. Threads can be dynamically reassigned
between components. This model has completed AMIP runs and
further analysis is underway.
(Figure courtesy Rusty Benson, NOAA/GFDL).
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Nested grids
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Concurrent two-way nesting

Typical nesting protocols force serialization between fine and coarse
grid timestepping, since the C∗ are estimated by interpolating between
Cn and Cn+1.

F n F n+ 1
3 F n+ 2

3 F n+1

Cn C∗n+ 1
3 C∗n+ 2

3 Cn+1

We enable concurrency by instead estimating the C∗ by extrapolation
from Cn−1 and Cn, with an overhead of less than 10%. (See Harris
and Lin 2012 for details.)
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Multi-model ensembles for climate projection

Figure SPM.7 from the IPCC AR5 Report. 20th century warming
cannot be explained without greenhouse gas forcings.
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Multi-model ensembles to overcome “structural
uncertainty”

Reichler and Kim (2008), Fig. 1: compare models’ ability to simulate
20th century climate, over 3 generations of models.

Models are getting better over time.
The ensemble average is better than any individual model.
Improvements in understanding percolate quickly across the
community.
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Genealogy of climate models

There is a close link between “genetic distance” and “phenotypic
distance” across climate models (Fig. 1 from Knutti et al, GRL, 2013).
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NRC Report on “Advancing Climate Modeling”

The 2012 NRC Report “A National Strategy for Advancing Climate
Modeling” (Google for URL...) made several recommendations:

Structural uncertainty: key issue to be addressed with common
modeling experiments: maintain model diversity while using
common infrastructure to narrow the points of difference.
Global data infrastructure as critical infrastructure for climate
science: data interoperability, common software requirements.
“Nurture” at least one unified weather-climate effort: NWP
methods to address climate model biases; climate runs to address
drift and conservation in weather models.
Forum to promote shared infrastructure: identify key scientific
challenges, design common experiments, set standards for data
interoperability and shared software.
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Real model performance: some considerations

Productions runs may be configured for capability (minimizing time
to solution or SYPD) or capacity (minimizing allocation or CHSY).
Computing resources can be applied to resolution or complexity:
what is a good measure of model complexity?
ESM architecture governs component concurrency: need to
measure load balance and coupler cost.
Codes are memory-bound: locate bloat (memory copies by user
or compiler).
Models configured for scientific analysis bear a significant I/O load
(can interfere with optimization of computational kernels). Data
intensity (GB/CH) is a useful measure for designing system
architecture.
Actual SYPD tells you if you need to devote resources to system
and workflow issues rather than optimizing code.

V. Balaji (balaji@princeton.edu) State of Play 29 October 2014 57 / 63



Analysis of several GFDL models

Measure overall computation cost for capability (Speed) or
capacity (Throughput) configurations.
Measure complexity as number of prognostic variables in the
model. (There may be better measures based on cluster
coefficients, etc.)
Measure coupler cost and load imbalance separately.
Measure memory bloat as actual memory (resident set size)
compared to ideal memory (number of variables × data domain
size).
Measure I/O load by rerunning model with diagnostics off. (input
files and restart files are considered an unavoidable cost and
aren’t counted here.)
Measure actual SYPD for a complete run (from when you typed
run to when the last history file was archived).

Land and Ice components are ignored in this analysis.
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Analysis of GFDL models: results

Model Resolution Cmplx. SYPD CHSY Coupler Load Imb. I/O MBloat ASYPD

CM2.6 S A0.5L32
O0.1L50

18 2.2 212,465 5.71% 20% 12% 1.6

CM2.6 T A0.5L32
O0.1L50

18 1.1 177,793 1.29% 60% 24% 12% 0.4

CM2.5 T A0.5L32
O0.25L50

18 10.9 14,327 17% 0% 6.1

FLOR T A0.5L32
O1L50

18 17.9 5,844 0% 57% 5.1% 31% 12.8

CM3 T A2L48
O1L50

124 7.7 2.974 0.5% 41% 14.76% 3% 4.9

ESM2G S A2L24
O1L50

63 36.5 279 8.91% 1% 34% 25.2

ESM2G T A2L24
O1L50

63 26.4 235 2.63% 22% 34% 11.4

More details are available (layout on MPI/thread, aggregate I/O
per CH or SD, platform, optimization, cost per component...)
Is this a basis for a cross-model comparison of performance
(CPMIP, anyone?) for a common understanding of the roadblocks
to performance?
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Preliminary cross-model comparisons

Figure courtesy Eric Maisonnave, Joachim Biercamp, Giovanni Aloisio
and others on the ISENES2 team.
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Preliminary cross-model comparisons: layout

Figure courtesy Eric Maisonnave, Joachim Biercamp, Giovanni Aloisio
and others on the ISENES2 team.
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CESM on Mira

Courtesy John Dennis and Rich Loft, NCAR. 0.25◦atmosphere,
1◦ocean on 32k cores of Mira at ∼2 SYPD.
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Conclusions

The commodity computing era has taken us from the von
Neumann model to the “sea of functional units” (Kathy Yelick’s
phrase). Not easy to understand, predict or program performance.
The “free lunch” decade encouraged us to indulge in very abstract
programming, and now they’ve come to take away your plates.
The “component” abstraction still may let us extract some benefits
out of the machines of this era:

sharing of the wide thread space.
distribute components among heterogeneous hardware?

Can we approach models as experimental biological systems?
(single organism or “cell line” not exactly reproducible; only the
ensemble is.)
Radically new computing paradigms – neuromorphic, biological,
quantum – are several acquisition cycles away.
The NWP and climate communities are all in the same boat:
greater cooperation is advisable (NRC Report 2012).
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