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Introduction

Wavelike solutions of the discrete equations that cannot (easily) be

identified with a corresponding solution of the continuous equations

are often called ‘computational modes’

Often revealed by von Neumann type normal mode analysis (but

laborious for any but the simplest schemes), or (for stationary

modes) by kernel analysis.
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Why are they bad?

Even if the initial conditions have zero amplitude computational

modes, they will certainly be excited by nonlinearity, physical

parametrizations, data assimilation.

They can adversely affect convergence.

They are often characterized by small spatial and/or temporal scales.

They may manifest themselves as a noisy solution, a failure to adjust

correctly towards balance, a spurious release of instability, or an

incorrect response to forcing.

It may be possible to filter them, but even then we are wasting DoFs.

Page 3



Computational modes
John Thuburn

Outline

• Introduction

• Classical examples: pressure modes, velocity modes, the Lorenz

grid computational mode

• Parasitic modes

• Temporal computational modes, and space-time interaction

• Families of computational modes: triangular C-grid, hexagonal

C-grid

• Trapped modes

• Summary
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Classical examples: modes that fail to propagate

Typically, a particular spatial pattern is invisible to the dynamics, for

example because of some averaging.

Pressure modes

Square A-grid:

φt + Φ(ux + vy) = 0

ut − fv + φx = 0

vt + fu + φy = 0
u,v,φ u,v,φ u,v,φ

u,v,φ u,v,φ u,v,φ

u,v,φ u,v,φ u,v,φ

A checkerboard pattern in φ gives ∇φ ≈ 0
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Velocity modes

Square A-grid:

φt + Φ(ux + vy) = 0

ut + φx = 0

vt + φy = 0
u,v,φ u,v,φ u,v,φ

u,v,φ u,v,φ u,v,φ

u,v,φ u,v,φ u,v,φ

If f = 0, a checkerboard u and/or v pattern gives ux + vy ≈ 0.
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C-grid Coriolis mode

Square C-grid:

φt + Φ(ux + vy) = 0

ut − fv + φx = 0

vt + fu + φy = 0

φ φ

φ φ

u u

u u

u

u

v

v

v

v

v

v

A certain checkerboard pattern in u and v has ux + vy ≈ 0 and

fv = fu ≈ 0.

In FEM literature such modes are called CD modes because they are

in the kernel of the C and D operators.
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Lorenz grid computational mode

E.g.

cpθΠz + g = 0

where Π = (p/p0)
κ.

Discrete solution is

not unique.

u, v, p, θ

w

u, v, p, θ

w

Schneider (MWR 1987): wrong response to steady forcing.

Arakawa and Moorthi (JAS 1988): spurious release of baroclinic

instability.
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Parasitic modes

All of the above are just the finest resolvable mode at the end of a

spectrum of badly behaved modes.

E.g. φt + Φux = 0; ut + φx = 0; 1D unstaggered grid
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Group velocity of the wrong sign; incorrect response to forcing.
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Temporal computational modes

Typically occur for schemes that use more than two time time levels,

e.g. leapfrog, Adams-Bashforth, and have short timescale O(∆t).

If the true dispersion relation has N modes for each wavenumber

then we get an extra N families of modes for every extra time level.

Modes whose amplification factor does not satisfy A → 1 as ∆t → 0

are computational modes.
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
0 0.5 1 1.5 2 2.5 3 3.5

−4

−3

−2

−1

0

1

2

3

4

k ∆ x

ω
 ∆

 t

c = 1

Page 14



Computational modes
John Thuburn

E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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E.g.

CTCS for 1D nonrotating

linear SWEs

φt + Φux = 0

ut + φx = 0

unstaggered grid
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Families of computational modes

For the rotating 2D shallow water equations we expect/hope to get a

cubic dispersion relation for ω(k):

ω(ω2
− f2

− Φk · k) = 0

Depending of the numbers of DoFs, we might get a higher degree

polynomial.

Then what are the extra roots?
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Example: the triangular C-grid

There are 5 DoF per basic re-

peating grid unit.

We get a quintic dispersion

relation.

(Danilov, Ocean Dyn 2010)

φ

φ

u

u u

ω

f

{

(

ω

f

)4

−

(

ω

f

)2

(3Q + C) + 3Q2(1 − C) + Q (4C − 1)

}

= 0

where Q = 8α2/3. One geostrophic mode, two IGW modes, and two

more IGW-like modes.

Rule of thumb: count pressure, divergence, and vorticity DoFs.
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Which branch is the branch of computational modes?

α = Rossby radius/∆
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Similar behaviour for RT0 on triangles (Le Roux et al, SJSC 2007)
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Example: hexagonal C-grid

There are 4 DoF per basic re-

peating grid unit.

We get a quartic dispersion

relation.

(Thuburn, JCP 2008)

φ
u

u u

(

ω

f

)2
{

(

ω

f

)2

− [T (k) + QS(k)]

}

= 0

Two geostrophic modes and two IGW modes.
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Aside: we must be careful in discretizing the Coriolis terms,

otherwise we have no zero frequency geostrophic solutions

(Ničković et al MWR 2002).
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Is the second Rossby mode branch a branch of computational

modes?

These modes are too passive
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But...

provided PV is accurately advected, they appear to be harmless because Doppler

shifting rather than the Rossby wave mechanism dominates ω.

Also, scale-selective damping suppresses them.

Artificially introduced grid scale vorticity noise at day 15 of test case 5.

Hex grid, 10242 faces. Plots are 1 hour apart.

Vorticity  Min −3.647e−05  Max 4.597e−05 Vorticity  Min −3.652e−05  Max 4.606e−05 Vorticity  Min −3.653e−05  Max 4.616e−05
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DoF per basic repeating unit is useful for Galerkin methods too

E.g. spectral element method, 1D nonrotating SWE (Melvin et al, QJRMS 2012)
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There are many 2D finite element examples (Le Roux, JCP 2012). Modification to

mass matrix, or disspation, can (sometimes) ‘glue’ the branches together.
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Trapped modes

pt + c
2
wz = 0

wt + pz = 0
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Waves are reflected from the location where their group velocity goes to zero.

(Vichnevetsky, Appl Numer Math 1987, Long and Thuburn, JCP 2011)
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e.g. Highest frequency eigenmode of spherical rotating SWEs on

lat-long, hexagonal Voronoi, and ‘Voronoi-ized’ cube grids

(Weller et al, MWR 2012)
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Summary

• Numerical distortion of wave propagation takes a variety of forms;

it is hard to give a concise yet comprehensive definition of

‘computational mode’.

• Distorted wave propagation can damage numerical solutions in

several ways (noise, convergence, adjustment, response to forcing...)

• Some ‘computational modes’ may be relatively harmless

(i) if the scheme may be modified so that extra branches become

extensions of physical branches;

(ii) if the distorted physics is not dominant in determining the wave

behaviour.
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