
ECMWF, 4 September 2013 

Continuous and Discontinuous Galerkin Methods 
 

Frank Giraldo 

Department of Applied Mathematics 
Naval Postgraduate School 
Monterey CA 93943 USA 

 
ECMWF Seminar on 

Recent Developments in Numerical Methods for Atmosphere and 
Ocean Modelling 

 

1 



ECMWF, 4 September 2013 

Motivation 
Our goal is to construct nonhydrostatic atmospheric models with 
the following capabilities: 
 
① Highly scalable on current and future computer architectures  
② Permitting general grids (e.g., statically and dynamically 

adaptive) 
③ Highly efficient 
④ High-order accuracy in all the numerics: spatial and temporal 
⑤ Unified regional and global NWP model 
⑥ Conservative, minimally dissipative with excellent dispersion 

properties 
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This talk will only focus on Spatial Discretization methods 
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Talk Summary 

1. Unified formulation of CGDG Methods 
2. Positivity Preservation 
3. The NUMA Model 
4. Adaptive Mesh Refinement 
5. Parallelization 
6. Examples with CGDG  
7. Closing Remarks 

 
 

 

3 



ECMWF, 4 September 2013 

1. Unified CGDG 

Desirable Properties of Numerical Methods 

① Stability/Robustness 

②Accuracy 

③ Efficiency (e.g., exascale) 

④Geometric Flexibility (e.g., hp refinement) 

⑤ Long Shelf-life (adaptable to new requirements) 
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CGDG methods offer one possibility to achieve these goals 
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1. Unified CGDG 
Question: What are CGDG methods? 

An element is chosen to be the basic building-block of the 
discretization and then a polynomial expansion is used to represent 
the solution inside the element. These are element-based Galerkin 
methods. 

 

 

 

 

 

If there is only one element spanning the global domain then we 
recover spectral methods 
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1. Unified CGDG 
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• Primitive Equations: 
 
• Approximate the solution as: 

 
– Interpolation O(N) 

 
• Write Primitive Equations as: 
 
• Weak Problem Statement: Find 

 
 

 
– such that  (Integration O(2N) ) 

 
 

1. Unified CGDG: General Idea 

(DG) 

(CG) 
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• Integral Form: 
 
 

• Matrix Form: 
 
 

• Where each matrix is: 
 
 
 

 
 For DG: 
 
 For CG: 

 

1. Unified CGDG 

Integration O(2N) 

C(R)=M-1
 S(G(Ri

(e)) 

Ri
(e) 

C(R)=(M(e)) -1
  Ri

(e) 
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• Integral Form: 
 
 

• Matrix Form: 
 
 

• Where each matrix is: 
 
 
 

 
 For DG: 
 
 For CG: 

 

1. Unified CGDG 

Integration O(2N) 

C(R)=M-1
 S(G(Ri

(e)) 

C(R)=(M(e)) -1
  Ri

(e) 

RI =G(Ri
(e))  
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• Integral Form: 
 
 

• Matrix Form: 
 
 

• Where each matrix is: 
 
 
 

 
 For DG: 
 
 For CG: 

 

1. Unified CGDG 

Integration O(2N) 

C(R)=M-1
 S(G(Ri

(e)) 

C(R)=(M(e)) -1
  Ri

(e) 

Ri
(e) =S(RI) 
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What are the Strong and Weak forms? 
 
• Let’s start with the PDE: 
 
• Integrate by Parts: 

 
 
• Introducing a numerical flux (*) yields the Weak form: 

 
 

 
• Integrating the 2nd term by parts again yields: 

 
 

 
• Combining the boundary integrals yields the Strong form: 

 
 

 
 

 
 

1. Unified CGDG: Weak & Strong 
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1. Unified CGDG: Convergence 

Convergence for the 1D Wave Equation after one revolution 
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1. Unified CGDG: Dispersion Properties (N=4) 
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CG 

DG 

No Dissipation With Dissipation 
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1. Unified CGDG: Vices and Virtues 
CG 

 
• High-order and local  
• Requires inexact integration for 

efficiency (no global M matrix) 
• Easy to construct MPI code  
• Not efficient if non-tensor product 

basis functions are used (i.e., 
triangles, tri-prisms, tetrahedra) 

• Easy to use with conforming 
adaptivity 

• Tricky to use with non-conforming 
adaptivity  

• Tricky to use P-adaptivity 
• Easy to construct IMEX (Schur 

Complement) formulations 
• Unclear how to make positivity 

preserving (VMS is best candidate) 
 

 
 

DG 
 

• High-order and local 
• Can use exact integration for (block 

diagonal global M matrix) 
• Very easy to construct MPI code  
• Can be used efficienctly with tris, 

tri-prisms, tetrahedra and also 
quads, hexahedra, etc. 

• Easy to use with conforming 
adaptivity 

• Easy to use with non-conforming 
adaptivity 

• Easty to use P-adaptivity 
• Not easy to construct IMEX (Schur 

Complement) formulations 
• There exist machinery for positivity 

preserving (numerical fluxes and 
limiters) 
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1. Benefits of Unified CGDG 

• Allows for 4 different possible solutions within the same code. 
– CG/DG and Strong/Weak forms. 

 
• Allows for a consistent approach for implementing boundary 

conditions. 
 

• Allows improvement of CG by using DG framework, including: 
① Performance on massively parallel architectures 
② Positivity preserving mechanisms 
③ Permitting the implementation of non-conforming grids (simplifies AMR) 
④ Paves the way for P-refinement for CG 

 
• Allows improvement of DG by using CG result: 

① Inclusion of IMEX methods to DG 
② Derivation of Schur Complement for DG 
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Talk Summary 

1. Unified formulation of CGDG Methods 
2. Positivity Preservation 
3. The NUMA Model 
4. Adaptive Mesh Refinement 
5. Parallelization 
6. Examples with CGDG  
7. Closing Remarks 
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How do we enforce positivity (e.g., tracers) with CGDG? 
 
• For DG, the obvious choice is limiters 

 
• For CG, there are many (not-so-obvious) choices but artificial 

diffusion methods is a likely choice. To this end, we are exploring the 
general class known as Variational Multi-Scale (VMS) Methods.  

 
 

 
 
 

 
 

2. Positivity Preservation 
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• A straightforward approach to limiting is to use the Zhang-Shu 

Limiter as follows: 
 

 
• Where the weight is defined as: 

 
 

 
• Where 

 
 
 

• and 
 

 
 
 

 
 

2. Positivity Preservation: Limiters 

18 



ECMWF, 4 September 2013 

2. Positivity Preservation: Limiters 
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DG 
DG 
with 
Limiter 
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• To help explain VMS, let us write the general PDE 
 

 
 
– Where L(q) contains, e.g., the divergence of the flux tensor. 

 
• The classical Galerkin formulation may be written as 

 
 
 
– Where the inner product is defined as: 

 
• With the VMS stabilization requiring an additional term 

 
 

 
 

 
 

2. Positivity Preservation: VMS 
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2. Positivity Preservation: VMS 
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Initial Condition 

Filter Hyper Diffusion 

VMS VMS-DC 
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3. The NUMA Model 
4. Adaptive Mesh Refinement 
5. Parallelization 
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3. The NUMA Model 

• NUMA=Nonhydrostatic Unified Model of the Atmosphere that can 
be used for both global and regional modeling. 

 
• NUMA is based on CGDG Methods with a suite of IMEX time-

integrators and Adaptive Mesh Refinement. 
 

• NUMA is comprised of a collection of models that include modules 
for: 

① NUMA3d is the nonhydrostatic atmospheric model (Euler 
equations) 

② NUMACOM is the coastal ocean model (shallow water equations 
with an Inundation model) 

③ NUMACOM_SPHERE is the spherical version of NUMACOM 
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4. Adaptive Mesh Refinement 

A grid point on an interface can be owned by more than two control volumes. This kind of 
adaptive method places MUCH OF THE BURDEN on the solver as it now needs to be able 
to handle non-conforming grids but greatly simplifies the adaptivity process. This kind of 
grid can produce very efficient adaptive methods and is the idea used in various AMR 
(e.g., M. Berger, P. Colella, etc.) 
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Conforming Grid Non-Conforming Grid 
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4. Adaptive Mesh Refinement 
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Case 1: Passive Advection 

CGDG Shallow Water Model on the Sphere 
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4. Adaptive Mesh Refinement 
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Dynamic AMR 

 Test case:   DENSITY CURRENT 
 Base mesh:  4x1 elements 
 Polynomial order: 10 
 Max. AMR level:  4 

MASS CONSERVATION 

Discontinuous Galerkin (DG) 

Continuous Galerkin (CG) 

Kopera-Giraldo [JCP 2013]  
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4. Adaptive Mesh Refinement 
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Kopera-Giraldo [JCP 2013]  
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4. Adaptive Mesh Refinement 
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Mueller-Kopera-Giraldo [JCP 2013]  
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4. Adaptive Mesh Refinement 
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Mueller-Kopera-Giraldo [JCP 2013]  
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Advecting vortex in 10 m/s x-aligned flow, doubly periodic BCs, 1000 km domain 

Wind Speed (m/s), NO AMR 

8th order polynomials, adapt mesh to potential vorticity 

With same resolution over vortex, AMR simulation is over 6 times as fast NO AMR 

Wind Speed (m/s), AMR 

CPU time: 9.11 h CPU time: 1.45 h 

4. Adaptive Mesh Refinement 
 

Courtesy of Eric Hendricks (NRL) 
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Advecting vortex in 10 m/s x-aligned flow, doubly periodic BCs, 1000 km domain 

Wind Speed (m/s), NO AMR 

8th order polynomials, adapt mesh to potential vorticity 

Wind Speed (m/s), AMR 

CPU time: 0.44 h CPU time: 1.45 h 

4. Adaptive Mesh Refinement 
 

With coarse resolution over domain, NO AMR is faster than AMR, but vortex is not as well 
resolved 

Courtesy of Eric Hendricks (NRL) 
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Advecting vortex in 10 m/s x-aligned flow, doubly periodic BCs, 1000 km domain 

Wind Speed (m/s), NO AMR 

4th order polynomials, adapt mesh to potential vorticity 

Wind Speed (m/s), AMR 

CPU time: 0.11 h CPU time: 0.41 h 

4. Adaptive Mesh Refinement 
 

With coarse resolution over domain and lower polynomial order, NO AMR vortex becomes 
highly distorted, while AMR vortex does not. 

Courtesy of Eric Hendricks (NRL) 
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5. Parallelization: Communication Stencil 

• On 2D (quads) CG requires information from 8 vertex neighbors whereas DG only 
requires information from its 4 face neighbors. 

• On 3D (hexahedra) CG requires information from 26 vertex neighbors whereas DG 
only requires information from  6 face neighbors. 
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5. Parallelization: Scalability 
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Ne=32^3 N=4 Ne=32^3  N=8 

• Local high-order CG and DG methods are known to be very accurate. 
• CG and DG Methods scale impressively on massively parallel computers. 
• Local high-order is beneficial for scalability because there is more on-processor 

work compared to the off-processor work (details can be found in Kelly-Giraldo JCP 
2012) 

• This plot is representative for explicit time-integration and implicit in the vertical. 
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5. Parallelization: DG Scalability 
Parallelize so well? 1. Send/Receive Boundary Data via 

non-blocking send/receive 
O(Ne

2/3N2).  While waiting for 
boundary data… 

2. Compute Volume integrals 
O(NeN4). 

3. Compute Intra-Processor fluxes. 
4. MPI_Waitall() 
5. Compute Inter-Processor fluxes. 
6. Multiply by element-wise inverse 

mass matrix. 

•The boundary calculation (fluxes) and interior calculation (volume integrals) are 
naturally decoupled.  Hence DG is relatively easy to parallelize. 
•R=Volume/Surface Area ratio = O(Ne

1/3
 N2). As Ne goes to 1, only for large N will there 

be sufficient work to maintain perfect scalability. 
•On TACC Ranger we have found R=60 which means that N>=7 satisfies this. 
•For IMEX, the behavior of DG is the same as in explicit for each iteration of an implicit 
solve. 
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NUMA: Moist Physics in Channel 
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Courtesy of Simone Marras (NPS) 
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NUMA: Moist Physics in Channel 
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Courtesy of Simone Marras (NPS) 
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NUMA: Moist Physics (DG) 

• blue: potential temperature, white: water vapor mixing ratio, green: rain water mixing ratio 
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7. Closing Remarks 
• CG or DG? 

– Both methods have their advantages 
– It is easy to carry both with little overhead 
– Comparison of CG and DG can be done fairly within the same model 
– For the moment CG is more efficient (wallclock time considerations only) 

due to the IMEX Schur complement (not discussed). 
– If HEVI is the only IMEX form desired then this advantage for CG vanishes. 
– We are running Cost versus Accuracy to determine which method wins in 

both static and dynamically adaptive mesh refinement. 
– In terms of dynamic AMR, DG is much more natural with nonconforming 

grids although it is possible to make CG work with nonconforming grids 
(NUMA has both). However, the computations required to get CG to 
conserve mass is not trivial (with nonconformity). 

– Performance on exascale computing hardware will always favor DG because 
of its data locality and the smaller communication stencil.   

– We are setting up to run massively parallel simulations to compare the 
scalability of both CG and DG on both CPU and GPU-based computers. 

– CG and DG can be combined quite easily within the same code – imagine 
regions that require IMEX time-integrators (use Schur form CG here) with 
areas that may require explicit time-integrators (use DG here). 
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