Compatible finite element methods for numerical weather prediction

Colin Cotter

Department of Mathematics Imperial College London

Talk Outline

- Definition of 1D compatible finite element spaces.
- Absence of spurious pressure modes.
- Definition and examples of 2D compatible finite element spaces.
- Absence of spurious pressure modes, existence of steady geostrophic pressure modes.
- Energy-enstrophy conservation, PV conservation for nonlinear shallow-water equations.
- Some numerical tests.

Why compatible finite elements?

Compatible finite elements

Also known as:

- discrete differential forms (Bossavit, electromagnetism),
- Finite element exterior calculus (Arnold, elasticity).

Extends properties of C-grid but extra flexibility allows:
(1) Higher-order consistency on arbitrary meshes,
(2) Flexibility to alter DOF ratio between velocity and pressure,
(3) No orthogonality constraint on meshes.

Building finite element methods

Discretise the 1D wave equation:

$$
u_{t}+p_{x}=0, \quad p_{t}+u_{x}=0, \quad u(0)=u(1), p(0)=p(1)
$$

The starting point

Represent u and p in some finite element space.

How are different finite element spaces defined?

Finite element spaces are defined by:
(1) The type of polynomials used in each element,
(2) The degree of continuity across element boundaries.

Example:

(1) p and u both linear functions in each element
(2) p and u both continuous across element boundaries

Incompatibility

Problem I: incompatibility

Writing $u_{t}+p_{x}=0$ doesn't work because:
(1) u is linear and continuous (P1).
(2) p_{x} is constant and discontinuous (P0).

Projection

Approximation

Solution to incompatibility is to approximate p_{x} by the function v that is closest to p_{x} in P1 (measured using L_{2} norm).

$$
v=\operatorname{argmin}_{v \in P_{1}}\left\|v-p_{x}\right\|_{L_{2}}^{2}=\int_{0}^{1}\left(v-p_{x}\right)^{2} \mathrm{~d} x
$$

Variational calculus $\Longrightarrow \int_{0}^{1} w v \mathrm{~d} x=\int_{0}^{1} w p_{x} \mathrm{~d} x, \quad \forall w \in P 1$.
(1) Expand w and v in a basis for P1.
(2) Solve the resulting sparse matrix system for basis coefficients of v.

Projection

Approximation

Solution to incompatibility is to approximate p_{x} by the function v that is closest to p_{x} in P1.

Building the equations

Unapproximated equations:

$$
u_{t}+p_{x}=0, \quad p_{t}+u_{x}=0
$$

Minimisation:
$u_{t}=\operatorname{argmin}_{u_{t} \in P 1} \int_{0}^{1}\left(u_{t}+p_{x}\right)^{2} \mathrm{~d} x, \quad p_{t}=\operatorname{argmin}_{p_{t} \in P 1} \int_{0}^{1}\left(p_{t}+u_{x}\right)^{2} \mathrm{~d} x$.
Finite element discretisation:

$$
\begin{aligned}
& \int_{0}^{1} w u_{t} \mathrm{~d} x+\int_{0}^{1} w p_{x} \mathrm{~d} x=0, \quad \forall w \in P 1 \\
& \int_{0}^{1} v p_{t} \mathrm{~d} x+\int_{0}^{1} v u_{x} \mathrm{~d} x=0, \quad \forall v \in P 1
\end{aligned}
$$

Problem II: spurious modes

Spurious pressure modes

$p \in P 1$ is a spurious pressure mode if:
(1) $p \neq 0$, and
(2) $\int_{0}^{1} w p_{x} \mathrm{~d} x \approx 0$, for all $w \in P 1$.

- If $p \in P 1$, then $p_{x} \in P_{0}$.
- The projection of p_{x} into P_{1} averages p_{x} over two neighbouring elements.
- On a regular grid, a zigzig pattern in p has a vanishing discrete gradient.
- Identical to spurious pressure mode on A-grid.

Smarter choice of finite element spaces

Equal finite element spaces

The spurious pressure mode problem occurs whenever we use the same finite element space for u as p.

Mixed finite element method

A mixed finite element method uses different finite element spaces for u and p.

- Already noticed that if $u \in P 1$, then $u_{x} \in P 0$.
- Choose $u \in P 1, p \in P 0$ to try to avoid averaging.
- We say that this choice of spaces is compatible with the derivative ∂ / ∂_{x}.

Weak derivatives

- Can now solve $p_{t}+u_{x}=0$ directly since $p_{t}, u_{x} \in P 0$.
- Can't solve $u_{t}+p_{x}=0$ directly since $P 0$ functions are discontinuous.

Solution

Integrate by parts in the integral form of the equations.

$$
\int_{0}^{1} w u_{t} \mathrm{~d} x+\int_{0}^{1} w p_{x} \mathrm{~d} x=0, \quad \forall w \in P 1
$$

becomes

$$
\int_{0}^{1} w u_{t} \mathrm{~d} x-\int_{0}^{1} w_{x} p \mathrm{~d} x+\underbrace{[w p]_{0}^{1}}_{=0}=0, \quad \forall w \in P 1 .
$$

No spurious pressure modes

Proposition (Ladyzhenskaya/Babuška/Brezzi (LBB) condition for P1-P0)
There exists a grid-independent constant C such that

$$
\max _{w \in P 1} \frac{\left|\int_{0}^{1} w_{x} p \mathrm{~d} x\right|}{\left\|w_{x}\right\|_{L_{2}}} \geq C\|p\|_{L_{2}}, \quad \forall p \in P 0
$$

Proof.
Choose w with $w_{x}=p$, then

$\max _{w \in P 1} \frac{w_{x} w_{x} \|_{L_{2}}}{\| w_{0}}$
$\forall p \in P O$. Hence $C=1$

No spurious pressure modes

Proposition (Ladyzhenskaya/Babuška/Brezzi (LBB) condition for P1-P0)

There exists a grid-independent constant C such that

$$
\max _{w \in P 1} \frac{\left|\int_{0}^{1} w_{x} p \mathrm{~d} x\right|}{\left\|w_{x}\right\|_{L_{2}}} \geq C\|p\|_{L_{2}}, \quad \forall p \in P 0
$$

Proof.

Choose w with $w_{x}=p$, then
$\max _{w \in P 1} \frac{\left|\int_{0}^{1} w_{x} p \mathrm{~d} x\right|}{\left\|w_{x}\right\|_{L_{2}}} \geq \frac{\int_{0}^{1} p^{2} \mathrm{~d} x}{\left(\int_{0}^{1} p^{2} \mathrm{~d} x\right)^{1 / 2}}=\left(\int_{0}^{1} p^{2} \mathrm{~d} x\right)^{1 / 2}=\|p\|_{L_{2}}$,
$\forall p \in P 0$. Hence $C=1$.

Building the equations II

Unapproximated equations:

$$
u_{t}+p_{x}=0, \quad p_{t}+u_{x}=0
$$

Finite element discretisation:

$$
\begin{aligned}
& \int_{0}^{1} w u_{t} \mathrm{~d} x-\int_{0}^{1} w_{x} p \mathrm{~d} x=0, \quad \forall w \in P 1 \\
& \int_{0}^{1} v p_{t} \mathrm{~d} x+\int_{0}^{1} v u_{x} \mathrm{~d} x=0, \quad \forall v \in P 0
\end{aligned}
$$

or equivalently:

$$
u_{t}+\tilde{\partial}_{x} p=0, \quad p_{t}+u_{x}=0
$$

Energy conservation

Proposition (Energy conservation)

The P1-P0 discretisation conserves the energy

$$
E=\int_{0}^{1} \frac{1}{2} u^{2}+\frac{1}{2} p^{2} \mathrm{~d} x
$$

Proof.

Energy conservation

Proposition (Energy conservation)

The P1-P0 discretisation conserves the energy

$$
E=\int_{0}^{1} \frac{1}{2} u^{2}+\frac{1}{2} p^{2} \mathrm{~d} x
$$

Proof.

$$
\begin{aligned}
\dot{E} & =\int_{0}^{1} u u_{t} \mathrm{~d} x+\int_{0}^{1} p p_{t} \mathrm{~d} x \\
& =\int_{0}^{1} u_{x} p \mathrm{~d} x+\int_{0}^{1}-p u_{x} \mathrm{~d} x=0
\end{aligned}
$$

Connection to C-grid

Nodal basis for P1 and P0:

Equations for basis coefficients

On equispaced grid:

$$
\begin{aligned}
\frac{1}{6}\left(\frac{\partial u_{i-1}}{\partial t}+4 \frac{\partial u_{i}}{\partial t}+\frac{\partial u_{i+1}}{\partial t}\right)+\frac{p_{i+1 / 2}-p_{i-1 / 2}}{\Delta x} & =0 \\
\frac{\partial p_{i+1 / 2}}{\partial t}+\frac{u_{i+1}-u_{i}}{\Delta x} & =0
\end{aligned}
$$

- Slight alteration of staggered finite difference method.
- Need to solve system of equations to get $\frac{\partial u_{i}}{\partial t}$.
- This modification maintains accuracy on non-equispaced grids.

General compatible finite elements in 1D

$$
u \in \mathbb{V}_{0}, p \in \mathbb{V}_{1}
$$

General case: $\mathbb{V}_{0}=P n, \mathbb{V}_{1}=P(n-1)_{D G}$.

Compatible finite element spaces in 2D

Rules:
(1) $\nabla \cdot$ maps from \mathbb{V}_{1} onto \mathbb{V}_{2}.
(2) ∇^{\perp} maps from \mathbb{V}_{0} onto $\operatorname{ker}(\nabla \cdot)$ in \mathbb{V}_{1}.

See: Arnold, Falk and Winther, Acta Numerica (2006) for history and general framework.

Example FE spaces

Example FE spaces

Example FE spaces

Vorticity

Velocity

Pressure

Example FE spaces

Example FE spaces

Construction of \mathbb{V}_{1}

Definition (Piola transformation)

The Piola transformation $\boldsymbol{u}^{\prime} \mapsto \boldsymbol{u}$:

$$
\begin{aligned}
\boldsymbol{u} \circ \boldsymbol{g}_{e} & =\frac{1}{\operatorname{det} \frac{\partial \boldsymbol{g}_{e}}{\partial \boldsymbol{x}^{\prime}} \frac{\partial \boldsymbol{g}_{e}}{\partial \boldsymbol{x}^{\prime}} \boldsymbol{u}^{\prime}} \\
\boldsymbol{u}^{\prime} \cdot \boldsymbol{n}^{\prime} \mathrm{d} x^{\prime} & =\boldsymbol{g}_{e}^{*}(\boldsymbol{u} \cdot \boldsymbol{n} \mathrm{~d} x)
\end{aligned}
$$

Normal components

$$
\int_{f} \boldsymbol{u}^{\prime} \cdot \boldsymbol{n}^{\prime} \mathrm{d} x=\int_{\boldsymbol{g}_{e}(f)} \boldsymbol{u} \cdot \boldsymbol{n} \mathrm{d} x
$$

M. Rognes, CJC, D. Ham and A. McRae, Automating the solution of PDEs on the sphere and other manifolds (GMDD).

Dual operators and projections

where (assume no boundaries)

$$
\begin{aligned}
\int_{\Omega} \boldsymbol{w} \cdot \tilde{\nabla} h \mathrm{~d} x=-\int_{\Omega} \nabla \cdot \boldsymbol{w} h \mathrm{~d} x, & \forall \boldsymbol{w} \in \mathbb{V}_{1} \\
\int_{\Omega} \gamma \tilde{\nabla}^{\perp} \cdot \boldsymbol{u} \mathrm{d} x=-\int_{\Omega} \nabla^{\perp} \gamma \cdot \boldsymbol{u} \mathrm{d} x, & \forall \gamma \in \mathbb{V}_{0} .
\end{aligned}
$$

Dual operators and projections

$$
\mathbb{V}_{0} \xrightarrow{\stackrel{\mathbb{V}^{\perp}=\left(-\partial_{y}, \partial_{x}\right)}{\tilde{\nabla}^{\perp} \cdot=\left(-\partial_{y}, \partial_{x}\right) .}} \mathbb{V}_{1} \xrightarrow{\stackrel{\nabla}{\rightleftarrows}} \stackrel{\mathbb{V}_{2}}{\longleftarrow}
$$

Also define projections Π_{i} into $\mathbb{V}_{i}, i=0,1,2$ by:

$$
\begin{aligned}
\int_{\Omega} \gamma\left(\Pi_{0} \alpha\right) \mathrm{d} x & =\int \gamma \alpha \mathrm{d} x, \quad \forall \gamma \in \mathbb{V}_{0} \\
\int_{\Omega} \boldsymbol{w} \cdot\left(\Pi_{1} \boldsymbol{F}\right) \mathrm{d} x & =\int \boldsymbol{w} \cdot \boldsymbol{F} \mathrm{d} x, \quad \forall \boldsymbol{w} \in \mathbb{V}_{1} \\
\int_{\Omega} \phi\left(\Pi_{2} \psi\right) \mathrm{d} x & =\int \phi \psi \mathrm{d} x, \quad \forall \phi \in \mathbb{V}_{2}
\end{aligned}
$$

Dual operators and projections

$$
\begin{gathered}
\mathbb{V}_{0} \xrightarrow{\stackrel{\nabla^{\perp}}{\longrightarrow}} \mathbb{V}_{1} \xrightarrow{\stackrel{\nabla}{\nabla^{\perp}}} \stackrel{\mathbb{V}_{2}}{\stackrel{\tilde{\nabla}}{\longleftarrow}}
\end{gathered}
$$

Properties
(1) $\tilde{\nabla}^{\perp} \cdot \Pi_{1} \boldsymbol{u}^{\perp}=\Pi_{0} \nabla \cdot \boldsymbol{u}$ for $\boldsymbol{u} \in \mathbb{V}_{1}$,
(2) $\Pi_{1} \nabla \psi=\tilde{\nabla} \Pi_{2} \psi$ for $\psi \in \mathbb{V}_{0}$,
(3) $\tilde{\nabla}^{\perp} \cdot \tilde{\nabla}=0$ (of course $\nabla \cdot \nabla^{\perp}=0$).

Application to linearised RWSE

$$
\boldsymbol{u}_{t}+f \Pi_{1} \boldsymbol{u}^{\perp}+g \tilde{\nabla} h=0, \quad h_{t}+H \nabla \cdot \boldsymbol{u}=0, \quad \boldsymbol{u} \in \mathbb{V}_{1}, h \in \mathbb{V}_{2}
$$

Proposition (Ladyzhenskaya/Babuška/Brezzi (LBB) condition for 2D)
There exists a grid-independent constant C such that

$$
\max _{\boldsymbol{w} \in \mathbb{V}_{1}} \frac{\left|\int_{\Omega} \nabla \cdot \boldsymbol{w} p \mathrm{~d} x\right|}{\|\nabla \cdot \boldsymbol{w}\|_{L_{2}}} \geq C\|p\|_{L_{2}}, \quad \forall p \in \mathbb{V}_{2}
$$

Proof.
Choose w with $\nabla \cdot w=p$, then
$\max _{w \in}$
$\forall p \in \mathbb{V}_{2}$. Hence $C=1$

Application to linearised RWSE

$$
\boldsymbol{u}_{t}+f \Pi_{1} \boldsymbol{u}^{\perp}+g \tilde{\nabla} h=0, \quad h_{t}+H \nabla \cdot \boldsymbol{u}=0, \quad \boldsymbol{u} \in \mathbb{V}_{1}, h \in \mathbb{V}_{2}
$$

Proposition (Ladyzhenskaya/Babuška/Brezzi (LBB) condition for 2D)

There exists a grid-independent constant C such that

$$
\max _{\boldsymbol{w} \in \mathbb{V}_{1}} \frac{\left|\int_{\Omega} \nabla \cdot \boldsymbol{w} p \mathrm{~d} x\right|}{\|\nabla \cdot \boldsymbol{w}\|_{L_{2}}} \geq C\|p\|_{L_{2}}, \quad \forall p \in \mathbb{V}_{2}
$$

Proof.

Choose \boldsymbol{w} with $\nabla \cdot \boldsymbol{w}=p$, then
$\max _{\boldsymbol{w} \in \mathbb{V}_{1}} \frac{\left|\int_{\Omega} \nabla \cdot \boldsymbol{w} p \mathrm{~d} x\right|}{\|\nabla \cdot \boldsymbol{w}\|_{L_{2}}} \geq \frac{\int_{\Omega} p^{2} \mathrm{~d} x}{\left(\int_{\Omega} p^{2} \mathrm{~d} x\right)^{1 / 2}}=\left(\int_{\Omega} p^{2} \mathrm{~d} x\right)^{1 / 2}=\|p\|_{L_{2}}$, $\forall p \in \mathbb{V}_{2}$. Hence $C=1$.

Application to linearised RWSE

$$
\boldsymbol{u}_{t}+f \Pi_{1} \boldsymbol{u}^{\perp}+g \tilde{\nabla} h=0, \quad h_{t}+H \nabla \cdot \boldsymbol{u}=0, \quad \boldsymbol{u} \in \mathbb{V}_{1}, h \in \mathbb{V}_{2}
$$

Geostrophic steady states:
(1) If $\nabla \cdot \boldsymbol{u}=0$, then $\boldsymbol{u}=\nabla^{\perp} \psi, \psi \in \mathbb{V}_{0}$.
(2) Choose $h=f \Pi_{2} \psi / g$, then $f \Pi_{1}\left(u^{\perp}\right)=-f \Pi_{1} \nabla \psi=-f \tilde{\nabla} \Pi_{2} \psi=-g \tilde{\nabla} h$.

Application to nonlinear RSWE

$$
\begin{aligned}
& \boldsymbol{u}_{t}+f(\underbrace{q \boldsymbol{u} h}_{=\boldsymbol{Q}})^{\perp}+\nabla\left(g h+|\boldsymbol{u}|^{2} / 2\right)=0, \quad h_{t}+\nabla \cdot(\underbrace{\boldsymbol{u} h}_{=\boldsymbol{F}})=0 . \\
& \mapsto \boldsymbol{u}_{t}+f \Pi_{1} \boldsymbol{Q}^{\perp}+g \tilde{\nabla}\left(h+\Pi_{2}|\boldsymbol{u}|^{2} / 2\right)=0, \quad h_{t}+\nabla \cdot \boldsymbol{F}=0
\end{aligned}
$$

for $\boldsymbol{u}, \boldsymbol{F} \in \mathbb{V}_{1}, h \in \mathbb{V}_{2}$ and some \boldsymbol{Q}.

Strategy from Arakawa and Lamb, Sadourny

(1) Apply natural curl to get vorticity equation.
(2) Map h to vertices to evaluate PV.
(3) Diagnose $P V$ flux \boldsymbol{Q} via \boldsymbol{F} and insert into velocity equation.

Implied PV equation

$$
\boldsymbol{u}_{t}+f \Pi_{1} \boldsymbol{Q}^{\perp}+\tilde{\nabla}\left(g h+\Pi_{2}|\boldsymbol{u}|^{2} / 2\right)=0
$$

Apply $\tilde{\nabla}^{\perp} \cdot: \quad \tilde{\nabla}^{\perp} \boldsymbol{u}_{t}+\tilde{\nabla}^{\perp} \cdot \boldsymbol{Q}^{\perp}+\underbrace{\tilde{\nabla}^{\perp} \cdot \tilde{\nabla}}_{=0}\left(g h+\Pi_{2}|\boldsymbol{u}|^{2} / 2\right)=0$.

PV $q \in \mathbb{V}_{0}$ defined by $\Pi_{0}(q h)=\tilde{\nabla}^{\perp} \cdot \boldsymbol{u}+\Pi_{0}(f)$.

$$
\text { Get } \frac{\partial}{\partial t} \Pi_{0}(q h)+\tilde{\nabla}^{\perp} \cdot \boldsymbol{Q}^{\perp}=0
$$

Usual continuous finite element discretisation:

$$
\int_{\Omega} \gamma(q h)_{t} \mathrm{~d} x-\int_{\Omega} \nabla \gamma \cdot \boldsymbol{Q} \mathrm{d} x=0
$$

McRae and Cotter (submitted to QJRMS)

(1) The choice $\boldsymbol{F}=\boldsymbol{\Pi}_{1}(h \boldsymbol{u})$ and $\boldsymbol{Q}=\boldsymbol{F} q$ conserves energy and enstrophy.
(2) The choice $\boldsymbol{F}=\Pi_{1}(h \boldsymbol{u})$ and $\boldsymbol{Q}=\boldsymbol{F}(q-(\tau / h) \boldsymbol{F} \cdot \nabla q)$ conserves energy and dissipates enstrophy (APVM).
(3) Both choices preserve constant q field for any initial h.

From Andrew McRae, using energy conserving, enstrophy dissipating (APVM) formulation.

Implicit timestepping setup

$$
\begin{aligned}
\boldsymbol{u}_{t}+(\underbrace{\boldsymbol{u} D q}_{\boldsymbol{Q}})^{\perp}+\nabla\left(g D+\frac{1}{2}|\boldsymbol{u}|^{2}\right) & =0 \\
D_{t}+\nabla \cdot(\underbrace{\boldsymbol{u} D}_{\boldsymbol{F}}) & =0
\end{aligned}
$$

Crank-Nicholson:

$$
\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{n}}{\Delta t}+\overline{\boldsymbol{Q}}^{\perp}+\nabla\left(g \bar{D}+\frac{1}{2} \overline{|\boldsymbol{u}|^{2}}\right)=0
$$

Solve $\quad D_{t}+\nabla \cdot(\bar{u} D)=0$,

$$
(q D)_{t}+\nabla \cdot(\overline{\bar{u}} D q)=0, \quad \text { from } t^{n} \text { until } t^{n+1}
$$

Then $\quad \overline{\boldsymbol{Q}}=\overline{\overline{\boldsymbol{u}} D q}$.
Preserves constant q fields.

Implementation details

- Scheme implemented on cubic "bendy" elements, all terms except for mass matrices are topological only (local element matrices independent of coordinates).
- P2(bubble)-BDFM1-P1DG spaces used.
- 3rd order in time SSPRK-DG used for layer depth (can locally reconstruct \boldsymbol{F}).
- 2 level, 3rd order in time $\bar{T}(2,3)$ Taylor-Galerkin scheme of Safjan and Oden (1995) used for PV (2 CG mass-matrix-like solves per timestep).
- 4 quasi-Newton iterations per timestep, and $\theta=1 / 2$.
- Helmholtz equation formed by hybridisation.

Testcases

Solid rotation testcase.

Testcases

Mountain test case (Grid 5, 46080 DOFs).

$\int^{Y} z x$

0
$V^{Y} z x$

1

2

3

CJC
 FEM NWP

$\int^{y} z x$

4
$V^{Y} Z x$
$\int^{Y} z x$

6
$\int^{Y} z x$

7

8

CJC
 FEM NWP

$V^{Y} Z x$

9

10

11

12

14

17

18

19

21
$\int^{y} z x$

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

$$
43
$$

$$
44
$$

45

46

47

$$
48
$$

$$
49
$$

50

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

32

33

34

35

36

37

38

39

40

41

$$
42
$$

$$
45
$$

46

47

48

$$
50
$$

Another story: dual meshes

$$
\begin{aligned}
& \begin{array}{c}
\stackrel{\tilde{\nabla}^{\perp}}{\stackrel{\tilde{\nabla}}{\longrightarrow}} \\
\mathbb{V}_{d}^{2} \stackrel{\nabla^{\perp}}{\longleftarrow} \mathbb{V}_{d}^{1} \stackrel{\nabla}{\longleftarrow} \mathbb{V}_{d}^{0}
\end{array} \\
& \downarrow \star_{h} \quad \downarrow \star_{h} \quad \downarrow \star_{h} \\
& \mathbb{V}_{p}^{0} \xrightarrow{\nabla^{\perp}} \mathbb{V}_{p}^{1} \xrightarrow{\nabla \cdot} \mathbb{V}_{p}^{2} \\
& \stackrel{\tilde{\nabla}^{\perp} .}{\longleftarrow} \quad \tilde{\nabla}
\end{aligned}
$$

- J. Thuburn and CJC, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SISC (2012).
- CJC and J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, (submitted to JCP, preprint on arXiv).

Towards 3D

Conclusions

- Extends C-grid approach with flexibility to take a) higher-order, b) non-orthogonal grids, c) different DOF ratios.
- Mimetic finite elements/finite element exterior calculus based on sequence of FE spaces compatible with ∇^{\perp} and ∇. to retain $\nabla \cdot \nabla^{\perp}=0$.
- Dual operators $\tilde{\nabla}^{\perp}$. and $\tilde{\nabla}$ are defined weakly and satisfy $\tilde{\nabla}^{\perp} \cdot \tilde{\nabla}$.
- Steady geostrophic modes and diagnostic PV conservation.
- Energy/enstrophy conservation possible.
- Efficient semi-implicit implementation with accurate advection is possible.

References

- J. Thuburn and CJC, A framework for mimetic discretization of the rotating shallow-water equations on arbitrary polygonal grids, SISC (2012).
- CJC and J. Shipton, Mixed finite elements for numerical weather prediction, JCP (2012).
- A. Staniforth, T. Melvin and CJC, Analysis of a mixed finite-element pair proposed for an atmospheric dynamical core, QJRMS (2012).
- T. Melvin, A. Staniforth and CJC, A two dimensional mixed finite element pair on rectangles, to appear in QJRMS.
- CJC and J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, (submitted to JCP, preprint on arXiv).
- M. Rognes, CJC, D. Ham and A. McRae, Automating the solution of PDEs on the sphere and other manifolds (submitted to GMD, viewable on GMDD).
- A. McRae and CJC, Energy-enstrophy conserving mixed finite element schemes for the rotating shallow water equations (submitted to QJRMS, preprint on arXiv).

3 year postdoctoral research associate position available!

