Some aspects of the HARMONIE limited-area model

Mariano Hortal
Project Leader on Dynamics. HIRLAM

Outlook

- Vertical discretization using finite elements
- Spectral discretization in the horizontal
- Spectral basis
- Biperiodization
- Relaxation to the nesting model
- Application of relaxation and biperiodization in spectral space
- Elimination of the extension zone from the gridpoint representation and increase of the width of the extension zone

Vertical discretization using finite elements (F.E.)

- In the hydrostatic version the only vertical operator is the integral
- In the non-hydrostatic version both the integral and the derivative are needed
- This introduces some constraints when arriving at a Helmholtz equation
- These constraints are not fulfilled by the F.E. operators

Construction of a vertical operator

$$
\begin{array}{cc}
F=\frac{d f}{d \eta} & \text { Derivative operator } \\
F(\eta) \sim \sum_{i=1}^{M} F_{i} E^{i}(\eta) \\
f(\eta) \sim \sum_{i=1}^{N} f_{i} i^{i}(\eta) & \begin{array}{l}
\text { Approximate functions } \\
\text { as linear combinations } \\
\text { of basis functions }
\end{array}
\end{array}
$$

$$
\sum_{i=1}^{M} F_{i} E^{i}(\eta) \approx \sum_{j=1}^{N} f_{j} \frac{d}{d \eta} e^{j}(\eta)
$$

Galerkin procedure

Scalarly multiply by a set of test functions

$$
\begin{aligned}
& \sum_{i=1}^{M} F_{i} \int_{0}^{1} E^{i}(\eta) T_{k}(\eta) d \eta=\sum_{j=1}^{N} f_{j} \int_{0}^{1} \frac{d}{d \eta} e^{j}(\eta) T_{k}(\eta) d \eta \quad \forall k \in(1-K) \\
& A_{k}^{i} \\
& B_{k}^{j} \\
& \text { (mass matrix) } \\
& \text { (operator matrix) }
\end{aligned}
$$

Approximation error: orthogonal to space spanned by test functions T

$$
\sum_{i=1}^{M} F_{i} A_{k}^{\prime}=\sum_{j=1}^{N} f_{j} B_{k}^{j} \Rightarrow \tilde{F} \mathbf{A}=\tilde{f} \mathbf{B}
$$

K equations
M unknowns

Galerkin procedure (cont)

\tilde{f} is the set of coefficients for the representation of function $f(\eta)$

If we are given the values $f\left(\eta_{j}\right)$ at a set of values of η (full level values)

$$
\begin{aligned}
& f\left(\eta_{j}\right)=\sum_{i=1}^{M} f_{i} e^{i}\left(\eta_{j}\right) \equiv \tilde{f} \mathbf{P} \\
& \tilde{f}=f\left(\eta_{j}\right) \mathbf{P}^{-1}
\end{aligned}
$$

\mathbf{P}^{-1} is the projection matrix to the space spanned by the basis functions e

Galerkin procedure (cont)

From the vector of values \tilde{F}
We can get the values of the function at full levels

$$
F\left(\eta_{l}\right)=\sum_{j=1}^{N} F_{j} E^{j}\left(\eta_{l}\right) \equiv \tilde{F} \mathbf{S}
$$

Where \mathbf{S} Is the inverse projection matrix from the space spanned by the basis E

$$
F\left(\eta_{j}\right)=\tilde{F} \mathbf{S}=\tilde{f} \mathbf{B} \mathbf{A}^{-1} \mathbf{S}=f\left(\eta_{j}\right) \mathbf{P}^{-1} \mathbf{B} \mathbf{A}^{-1} \mathbf{S} \equiv f\left(\eta_{j}\right) \mathbf{M}
$$

Vertical operators (cont)

- Matrix M applied to the set of full-level values of field f gives the set of full-level values of its derivative
- Similarly we can compute the matrix for the integral operator: \mathbf{N}
- The order of accuracy of both \mathbf{M} and \mathbf{N}, using cubic basis functions can be shown to be 8
- \mathbf{M} and \mathbf{N} are NOT the inverse of each other

Hir

Equations

$$
\begin{aligned}
& \frac{d \mathbf{V}}{d t}+\frac{R T}{p} \nabla_{\eta} p+\frac{1}{m} \frac{\partial p}{\partial \eta} \nabla_{\eta} \phi=\varsigma \\
& \gamma \frac{d w}{d t}+\boldsymbol{g}\left(1-\frac{1}{m} \frac{\partial p}{\partial \eta}\right)=\gamma \Omega \\
& \frac{\partial m}{\partial t}+\nabla_{\eta}(m \mathbf{V})+\frac{\partial}{\partial \eta}(m \eta)=0 \\
& \frac{d T}{d t}-\frac{R T}{C_{p}} \frac{1}{p} \frac{d p}{d t}=\frac{Q}{C_{p}} \\
& \frac{d p}{d t}+\frac{C_{p}}{C_{v}} p D_{3}=\frac{Q p}{C_{v} T} \\
& \frac{d \phi}{d t}=\boldsymbol{g w} \\
& \frac{\partial \phi}{\partial \pi}=-m \frac{R T}{p} \\
& \text { EСМwF Seminar, September 2013 }
\end{aligned}
$$

Pressure departure and Vertical divergence

$$
\begin{aligned}
& P=\frac{p-\pi}{\pi} \\
& d=-g \frac{\rho}{m} \frac{\partial w}{\partial \eta}
\end{aligned}
$$

The corresponding equations are

$$
\begin{aligned}
& \frac{d P}{d t}=(1+P)\left(\frac{1}{p} \frac{d p}{d t}-\frac{1}{\pi} \frac{d \pi}{d t}\right)=-(1+P)\left(\frac{C_{p}}{C_{v}} D_{3}+\frac{\dot{\pi}}{\pi}\right)+(1+P) \frac{Q}{C_{v} T} \\
& \frac{d \mathrm{~d}}{d t}=\mathrm{d} \frac{1}{p} \frac{d p}{d t}-\mathrm{d} \frac{1}{T} \frac{d T}{d t}-\mathrm{d} \frac{1}{m} \frac{d m}{d t}-g \frac{p}{m R T} \frac{d}{d t}\left(\frac{\partial w}{\partial \eta}\right)
\end{aligned}
$$

Helmholtz equation

Eliminating from the discretized set of equations (with some constraints to be fulfilled by the operators) all the variables except the vertical divergence, we obtain a Helmholtz equation:

$$
\left[1-(\Delta t)^{2} c_{*}^{2}\left(m_{*}^{2} \nabla^{2}+\frac{\mathbf{L}^{*}}{r H_{*}^{2}}\right)-(\Delta t)^{4} \frac{N_{*}^{2} c_{*}^{2}}{r} m_{*}^{2} \nabla^{2} T^{*}\right] \mathrm{d}=r . h . s .
$$

Which can be solved very easily in spectral space In a projection on vertical eigenvectors

Choices to apply VFE in the NH version

- Choose a set of equations using only one vertical operator
- Change the set of forecast fields
- Change the vertical coordinate to one based on height instead of mass
- Solve a set of two coupled equations instead of a single Helmholtz equation

Change of the vertical coordinate to a height-based hybrid one

- Use of a time-independent coordinate eliminates the X-term.
- Only derivatives are used in the vertical (no integrals) which simplifies the constraints to arrive at a single Helmholtz equation
- The coordinate is still a hybrid coordinate. The data flow is maintained.

Change the vertical coordinate

- Juan Simarro has tested this option.
- Any vertical discretization, either finite differences or finite elements of accuracy order greater than 4 becomes unstable

Note: In general higher accuracy leads to lower stability

Solve a coupled system of equations (Jozef Vivoda \& Petra Smolikova)

- In order to arrive at a single Helmholtz equation, the following constraint (C1) has to be fulfilled

$$
A_{1} \equiv G^{*} S^{*}-S^{*}-G^{*}+N^{*}=0
$$

Where

$$
\begin{aligned}
& \left(G^{*} \psi\right)_{l} \equiv \int_{\eta}^{1} \frac{m^{*}}{\pi^{*}} \psi d \eta \\
& \left(s^{*} \psi\right)_{l} \equiv \frac{1}{\pi_{l}^{*}} \int_{0}^{\eta_{l}} m^{*} \psi d \eta \\
& \left(N^{*} \psi\right)_{l} \equiv\left(S^{*} \psi\right)_{L+1}
\end{aligned}
$$

As this constraint is not fulfilled with the finite-elements integral operator, we cannot arrive at a single Helmholtz equation

Solve a coupled system of equations (cont)

Instead, we arrive at a coupled system involving both The horizontal and the vertical divergences

$$
\left(\begin{array}{cc}
\mathbb{E} & -\mathbb{F} \\
-\mathbb{B} & \mathbb{A}+\mathbb{C}
\end{array}\right)\binom{d}{D}=\binom{d^{\bullet}}{D^{\bullet}} .
$$

where $\quad \mathbb{A}=\left(1-\delta t^{2} c^{2} \Delta\right)$,
$\mathbb{B}=\delta t^{2} \triangle\left(-R T^{*} \mathcal{G}^{*}+c^{2}\right)$,
$\mathbb{C}=\delta t^{2} \triangle R T^{*} \mathcal{A}_{1}$,
$\mathbb{E}=\left(1-\delta t^{2} c^{2} \frac{\mathcal{L}^{*}}{r H^{2}}\right)$,
$\mathbb{F}=\delta t^{2} \frac{\mathcal{L}^{*}}{r H^{2}}\left(-R T^{*} \mathcal{S}^{*}+c^{2}\right)$.
Hir ${ }^{\text {amm }}$

$$
\mathcal{L}^{*} \psi=\frac{1}{m^{*}} \frac{\partial}{\partial \eta}\left(\frac{\pi^{* 2}}{m^{*}}\right) \frac{\partial \psi}{\partial \eta}+\left(\frac{\pi^{*}}{m^{*}}\right)^{2} \frac{\partial^{2} \psi}{\partial \eta^{2}}
$$

Solve a coupled system of equations (cont)

- The system of equations is twice as large as in the hydrostatic case
- An iterative procedure has been adopted for solving the system
- This method is being implemented in both HARMONIE and IFS

Hirlam

Spectral horizontal discretization

- Spherical harmonics are not an appropriate basis for a limited-area domain
- The model equations are solved on a plane projection with Cartesian x-y coordinates
- Double Fourier functions are used as the basis for spectral discretization
- Fields should be periodic in both x and y
- An extension zone is used to biperiodize the fields

Hir

Biperiodization of fields

$$
F(x, y) \approx \sum_{i=-I}^{I} \sum_{j=-J}^{J} f_{k}^{l} e^{i k x / L_{x}} e^{j l y / L_{y}}
$$

Periodic in x (period Lx) and in y (period Ly)

ECMWF Seminar, September 2013

Boundary conditions

ECMWF Seminar, September 2013

Boundary conditions Gabor Radnoti 1995

Semi-implicit solution procedure:

$$
\begin{aligned}
& (I-\Delta t \mathscr{C}) \Psi_{t+\Delta t}=\underbrace{\Psi_{t+\Delta t(\exp)}+\Delta t \mathscr{Q}\left(\Psi_{t-\Delta t}-2 \Psi_{t}\right)}_{\tilde{\Psi}} \\
& \text { pling to a nestina model (LS) }
\end{aligned}
$$

Coupling to a nesting model (LS)
$\alpha=1$ at the whole of E.

$$
\Psi^{C}=(1-\alpha) \cdot \Psi^{l}+\alpha \cdot \Psi^{L S}
$$

$\alpha=0$ at the whole of C Smoothly changing at I

Implementation:

$$
(I-\Delta t \mathscr{C}) \Psi_{t+\Delta t}=(1-\alpha) \Psi^{l}+\alpha(I-\Delta t \mathscr{C}) \Psi_{t+\Delta t}^{L S}
$$

Hir $1 a m$

Boundary cond. (cont)

$\Psi_{t+\Delta t}^{L S} \quad$ Are values derived from the nesting model.
Their values at the right border of E should join smoothly with their values at the left border of I

They can be computed by means of smoothed splines Or by Boyd's linear combination of the values at E and at B

Increasing the width of E

- In data assimilation the influence of an observation covers an area around the observation position
- Due to the periodicity of fields, an observation close to the right border of the inner domain can affect the fields on the left border.
- That can be eliminated by increasing the width of the extension zone

Increasing the width of E (cont)

- If the points in the extension zone are present in the gridpoint representation
- The cost of running the model increases if we increase the width of E
- Due to the clipping of the semi-Lagrangian trajectories to the C+I area, the interpolation points could fall outside the semiLagrangian buffer, producing floating-point errors or segmentation faults
- Elimination of the extension zone from the grid-point representation
- Application of the boundary conditions and biperiodization in spectral space
${ }_{i}^{*} \mathrm{Hir}$

