

Thanks to R. Engelen, M. Parrington, S. Massart

Monitoring Atmospheric Composition and Climate – Interim Implementation

MACC-II is the third in a series of FP6 & 7 EU projects (since 2005), benefiting also from earlier ESA/GSE projects. It is coordinated by ECMWF and the consortium comprises 36 partners from 13 countries. MACC-II runs until end of July 2014, when the operational Copernicus Atmosphere Service starts.

MACC Service Provision

Envisaged operational MACC-II NRT production system (2014)

- 12UTC cycle (using observations from 3 -15 UTC) starts with an observation cut-off time of 17UTC
- Dissemination of the 5-day forecast at approximately 20:15UTC

Data used in MACC NRT system

Instrument	Satellite	Satellite operator	Data provider	Species	Status
MODIS	Terra	NASA	NASA/NOAA	Aerosol, fires	Active
MODIS	Aqua	NASA	NASA/NOAA	Aerosol, fires	Active
SEVIRI	Meteosat-9	EUMETSAT	IM	Fires	Active
Imager	GOES-11, 12	NOAA	NOAA	Fires	Passive
Imager	MTSAT-2	JMA	JMA	Fires	Planned
MLS	Aura	NASA	NASA	O ₃	Active
OMI	Aura	NASA	NASA	O ₃	Active
SBUV-2	NOAA- 16,17,18,19	NOAA	NOAA	O ₃	Active
SCIAMACHY	Envisat	ESA	KNMI	O ₃	Died
GOME-2	Metop-A	EUMETSAT	DLR	O ₃	e-suite
	Metop-A	EUMETSAT	LATMOS/ULB	CO	Active
	Metop-B	EUMETSAT	LATMOS/ULB	CO	Passive
MOPITT	Terra	NASA	NCAR	СО	Active
GOME-2	Metop-A	EUMETSAT	DLR	NO ₂	Passive/Tests
ΟΜΙ	Aura	NASA	KNMI	NO ₂	Active
ΟΜΙ	Aura	NASA	NASA	SO ₂	Active
GOME-2	Metop-A	EUMETSAT	DLR	SO ₂	Passive/Tests
GOME-2	Metop-A	EUMETSAT	DLR	HCHO	Passive
Offline tests:					
	Metop-A	EUMETSAT	LATMOS/ULB	<mark>O3</mark>	Tests

CH4 and CO2 used in delayed-mode analysis and reanalysis

Potential for retrieving wide range of geophysical parameters from EO measurements, e.g. IASI

- Tropospheric sensitivity to several chemical species
- Long-term measurements with multiple instruments

Clerbaux & Crevoisier, Atm. Env., 2013

IASI spectrum

1st 500 channels cover the 15µm CO₂ band giving the bulk of temperature information in current systems.

M. George et al. (LATMOS/ULB)

Using trace gas retrievals in MACC

- Easier
- No radiative transfer model for some of the species of interest
- Bad experiences with radiance assimilation:
 - Combination of model bias and VarBC in CO₂ data assimilation from AIRS and IASI radiances caused artificial long-term trend. New experiments with correction to fluxes are needed to assess the use of VarBC.
 - Tests with IASI/AIRS ozone radiance assimilation led to degraded tropospheric ozone
 - ECMWF uses IASI/AIRS/HIRS-9 radiances in ozone analysis

AIRS O3 channels	950 to 117	8		1088 as anchor
IASI O3 channnels	1479,	1509,	1513,	varbc
	1521,	1536,	1574,	
	1578,	1579,	1585,	
	1587,	1626,	1639,	
	1643,		1652,	
	1658,	1671		
HIRS channel 9	active			varbc

Assimilation of CO observations in a global model

Carbon Monoxide (CO) is a tracer of combustion sources

MACC reanalysis: Validation against monthly mean CO concentrations from ground-based NOAA/GMD stations

[ppbv]

I. Bouarar (LATMOS)

MOPITT TCCO (from NCAR) assimilated from January 2003 onwards. IASI TCCO (from LATMOS/ULB) assimilated from April 2008 onwards. More validation in Inness et al. (2013) and from www.gmes-atmosphere.eu

Forest fires in NW Ontario in July 2011

IASI CO TOTAL COLUMN molecules cm^{-2} (DAY: 20110716)

Importance of biomass burning for atmospheric composition in that it is episodic but really stands out from the background and other potential CO sources

From http://aolab.phys.dal.ca/data/archive/halifax_2011/iasi/Archive/July21PM/world.gif

Russian fires 2010

Huijnen et al. 2012

TM5-chem-v3.0 coupled to ECMWF-IFS 'daily' 4 day hindcasts were produced From 15 July – 31 August 2010

Version	Assimilation	Emissions
Ref	no	GFEDv2 climatology
Assim	CO (IASI), O3 (OMI, MLS), NO2 (OMI)	GFEDv2 climatology
GFAS	no	GFASv1
Assim-GFAS	CO (IASI), O3 (OMI, MLS), NO2 (OMI)	GFASv1

Notes:

➢One year spin-up (free model run)

➢ RETRO/REAS anthropogenic emissions

> In forecasts: persistency of fire emissions

CO without/with assim vs MOPITT-V4

MOPITT mean CO - TC Aug 2010

Huijnen et al. 2012

Macc Evolution of CO columns vs MOPITT-V4

Huijnen et al. 2012

macc Daily maximum surface O₃ and CO concentrations

Huijnen et al. 2012

Assimilation of OMI SO2 in the MACC system. Detecting volcanic SO2 signal with IASI L1 data

• Method used to produce SO2 alerts by the Support to Aviation Control service (SACS), see http://sacs.aeronomie.be/nrt/

• From the IASI L1C BUFR file calculate (Clerbaux pers. comm.):

dBT=(BT(b1)+BT(b2)-BT(s1)-BT(s2))/2

b1 = channel 3050, 1407.25 cm-1 (baseline 1) b2 = channel 3056, 1408.75 cm-1 (baseline 2) s1 = channel 2907, 1371.50 cm-1 (SO2 channel 1) s2 = channel 2908, 1371.75 cm-1 (SO2 channel 2)

• Clarisse et al. (2008) and Karagulian et al. (2010) found linear correlation between dBT and SO2 concentrations for SO2< 35DU: Maps of dBT can show volcanic SO2. Also Clarisse et al. (2012)

Eruption of Puyehue, Chile, 5 June 2011, 12z

OMI SO2 are assimilated if

- SO2 > 5DU
- 60S < Latitude < 70N
- SCANPOS < 24
- SOE > 15deg

SO2 analysis and IASI SO2 dBT signal

ECMWF Analysis VT:Sunday 12 June 2011 12UTC Surface: **Total column Sulphur dioxide

• Grey dots: dBT values > 3K

Now also IASI SO2 images, from http://sacs.aeronomie.be/nrt/

Use of IASI CH4 retrievals in MACC delayedmode analysis

Benefit of trace gases for NWP: VarCO₂ in radiance assimilation

Reduced AIRS and IASI Bias Correction

Mean bias correction (K) for August 2009 for AIRS channel 175 (699.7 cm⁻¹; maximum temperature sensitivity at ~ 200 hPa)

Using modelled CO₂ in AIRS/IASI radiance assimilation leads to significant reduction in needed bias correction.

Small positive effect on T analysis and neutral scores.

Use of different approximations instead of fully modelled CO_2 is subject of further study.

Engelen and Bauer, QJRMS, 2011

One person's noise is another person's signal

