Error diagnostics for PC scores assimilation

Niels Bormann, Marco Matricardi and Tony McNally

Introduction

- Specifying errors is essential for the assimilation of any observation.
- Simpler error characteristics were a key argument for moving to the assimilation of raw radiances.
- What are the characteristics of observation and background error in PC-space?
- In radiance space, representativeness, RT, and QC errors are correlated between channels – what do they look like in PCspace?
- For a given assumed observation error in PC-space, what is the equivalent error in radiance space?
- PC-truncation is not addressed in this talk.

Observation error in PC-space

When PCs are calculated from noise-normalised radiances, the observation error is:

$$\mathbf{R}_{PC} = \mathbf{I} + \mathbf{F}_{PC}$$

I – Identity matrix

 F_{PC} – "other errors" (e.g., forward model errors, representativeness errors, QC errors, etc)

What does F look like in PC space?

 $\bullet \rightarrow Observation-space diagnostics$

Experiments

- Diagnostics taken from assimilation systems with the full observing system (19 June – 19 July 2012):
 - PC-scores assimilation:
 - Assimilation of 305 PC-scores derived from 305 channels from IASI bands 1 & 2
 - Assimilation of completely clear scenes only; new cloud detection
 - → Marco Matricardi's talk yesterday
 - Radiance assimilation:
 - Assimilation of brightness temperatures from 191 channels (as performed in operations).
 - Assimilation of clear channels and overcast scenes
- Error diagnostics with Hollingsworth/Lönnberg method from completely clear scenes (Desroziers gives qualitatively similar results).

Background departures

Diagnosed background and observation error

Diagnosed background and observation error

Diagnosed background and observation error

Diagnostics: Some points

For raw radiance assimilation:

- Background error small for T-sounding; instrument noise dominates observation errors.
- Significant contribution from "other" errors for window channels, H₂O, O_{3.}
- Background errors larger than observation errors for window channels, H₂O.

• For PC-scores assimilation:

- Background and observation error comparable for leading PCscores.
- Significant contribution from "other" errors for leading PC-scores.
- Instrument noise dominates for higher-order PC-scores.

PC assimilation

Radiance assimilation

PC assimilation

Radiance assimilation

PC assimilation

Radiance assimilation

PC assimilation

Radiance assimilation

How do the *diagnosed* observation errors compare in brightness temperature space?

Conversion PC scores \leftrightarrow **brightness temperatures**

From radiances to PC-space:

$$\mathbf{y}_{PC} = \mathbf{U} \mathbf{N}^{-1/2} (\mathbf{y}_{Rad} - \overline{\mathbf{y}_{Rad}})$$

- y observations
- U matrix with rows of eigenvectors of covariance matrix
- N covariance of instrument noise
- Convert observation error covariance R diagnosed in PCspace to radiance space:

$$\mathbf{R}_{\text{Rad}} = \mathbf{U}^{\text{T}} \mathbf{N}^{-1/2} \mathbf{R}_{\text{PC}} (\mathbf{N}^{-1/2})^{\text{T}} \mathbf{U}$$

Conversion to brightness temperature space:

$$\mathbf{R}_{\mathrm{BT}} = \mathbf{P} \mathbf{R}_{\mathrm{Rad}} \mathbf{P}^{\mathsf{T}}$$

P – Jacobian of the inverse Planck function at mean scene temperature

Diagnosed observation errors, subsampled for common channel set

Diagnosed observation error correlations, subsampled for common channel set

PC assimilation, converted to radiance space

Radiance assimilation, common channels only

PC assimilation, converted to radiance space

Radiance assimilation

What do the assumed observation errors from the radiance and the PC experiment look like in brightness temperature space?

Assumed observation errors

(subsampled for common channel set)

Assumed observation errors

(subsampled for common channel set)

Wavenumber [cm⁻¹]

Channel number

Assumed observation error correlations

(subsampled for common channel set)

PC assimilation, converted to radiance space

Radiance assimilation

CMWF

Assumed observation error correlations

PC assimilation, converted to radiance space

Radiance assimilation

PC assimilation, converted to radiance space

Radiance assimilation

<u>NWP-SAF workshop</u> on efficient representation of hyperspectral IR data, Nov 2013

Assumed observation error correlations

PC assimilation, converted to radiance space

Radiance assimilation

Background departure statistics (normalised to no-IASI experiment)

Summary

- Diagnostics suggest F introduces error correlations for PCs as well as radiances.
- Observation error covariances diagnosed from the PCassimilation and the radiance assimilation are qualitatively consistent.
- The diagonal observation error covariance used in the PC assimilation implies:
 - Some inter-channel error correlations when converted to radiance space,
 - with some of them qualitatively consistent with the diagnosed error correlations,
 - but with some spurious inter-channel error correlations (e.g., between stratospheric and humidity channels).

 There is scope for improved observation error specification for PC (and radiance) assimilation.

Assumed errors in PC-space (B1 only)

