Recent progress of GRAPES_GFS in China and the relevant parallel experiment system

Bin Zhou, Jianjie Wang, Jian Sun, Jiankai Hu, Bin Zhao Numerical Weather Prediction Center, China Meteorological Administration

Nov. 19, 2013 Reading

- About GRAPES
- Recent progress of GRAPES_GFS
- Parallel experiment system of GRAPES_GFS
- Future plan

- About GRAPES
- Recent progress of GRAPES_GFS
- Parallel experiment system of GRAPES_GFS
- Future plan

Why and When called GRAPES?

GRAPES (Global/Regional Assimilation Pr*E***diction System), project launched since 2001.**

What GRAPES' characteristics are?

A Unified NWP system

 a common dynamic core with different configurations of physics for different applications

 Four main components

 ✓ Variational DAS
 ✓ Unified dynamic core
 ✓ Physical parameterization scheme
 ✓ Parallel computing

- About GRAPES
- Recent progress of GRAPES_GFS
- Parallel experiment system of GRAPES_GFS
- Future plan

from last December :

- ✓ <u>Released a new version(June, 2013)</u>
- ✓ Updated parallel experiment system(July, 2013)
- ✓ Improved GFS to adapt to new HPC IBM_Flex(July, 2013)
- ✓ Migrated parallel experiment system to IBM_Flex(August, 2013)
- ✓ Developed evaluation tools

new version(GRAPES_GFS_1-4-2-2)

Data assimilation

- Horizontal resolution from 1° to 0.5°
- → Re-calculate background error covariance
- Height assignment for FY-2E AMVs
- → QC for surface obs.
- → NOAA 19

→ AIRS

Model

- → 4th order diffusion
- → PRM for scalar advection
- SPLINE for dyn-phy interpolation
- → Update PBL and SAS

DA's horizontal resolution from 1° to 0.5°

2011060100---2011063018

Height assignment for FY-2E AMVs

RMSE of u/v against NCEP analysis are reduced

PRM and SPLINE

Grapes Evaluate Tool (GET)

- About GRAPES
- Recent progress of GRAPES_GFS
- Parallel experiment system of GRAPES_GFS
- Future plan

Parallel experiment system of GRAPES_GFS

R2O flow in NWPC

Now, this system is based on **GRAPES_GFS_1-4-2-3** (this version is adapted to our new high performance computer IBM_Flex).

NWP

Used techniques: ➢ Perforce(from ECMWF)
➢ Supervisor Monitor Scheduler (from ECMWF)
➢ MARS (from ECMWF)
➢ GET(based on NCAR evaluate tools)

Perforce

SMS

GRAPES_GFS parallel experiment system(config)

- Leading time: 240 hour forecast (12UTC)
- Resolution: model:0.5° /L36 with model top at 1 hPa
- Model physics:
 - Radiation: RRTMG LW(V4.71)/SW(V3.61)
 - Cumulus: Simplified Arakawa Schubert with modified entrainment and detrainment rates
 - Grid-scale precipitation: WSM-6
 - Cloud: Xu & Randall diagnostic cloud
 - Land surface: CoLM
 - PBL: Modified Hong & Pan nonlocal PBL
 - Gravity wave drag: Baines & Palmer (1990)
- DAS:
 - Incremental analysis,
 - Digital filterbackground error covariance NMC method
 - 0.5°X0.5° resolution, 17 standard pressure levels
 - Recalculated pressure levels
 - Bias correction scheme of satellite radiances based on simple linear regression (Harris and Kelly,2001): (1) 1000-300 hPm thickness. (2)200-50 hPa thickness.

Verification

Domain	Parameter	redet		AD	om	iaiy	7 0	orr	eia	101	n			КМ	81	srr	or			
		250		▲	۸	۸	*	٠	*			▲	۸	۸	۸	۸	۸			
	UWND	5 00			۸	▲			٠			۸		▲	۸	▲	۸			
		850			۸	۸		*	*					▲	۸	▲				
		250			4	۸	۸		۸			۸			۸	۸	۸	A		
	AMND	500		۸	۸	۸	۸	۸	۸			۸		۸	۸	۸	۸			
EASI		850							۸			۸								
		250		۸	1		4	1	▲			٨	*	▲	۸	▲	4	۸		
	TEMP	500		۸	۸	۸		۸	۸			۸	۸	۸	۸	۸	۸			
		850		۸	۸	▲	۸		▲			۸		▲	۸	▲	۸			
		250		▲	۸	۸	۸		۸			۸	۸	۸	۸	۸	۸			
	HGT	500		۸	۸	۸	۸	۸	۸			٠		▲	۸		۸	۸		
		850			۸	۸	*	*	٠			٠	۸	*	*	۸	۸	*		
		250		1	۸		1		۸			٨	*		۸		4	1		
	UWND	500		4			4		*				A		4					
		850																		
		250																	\vdash	\vdash
	VWND	500		Ā	Ā	Ā	4		۸				Ā		Ā					
NH		850		4			4		*				A		4					
		250	Ā	Ā	Ā	Ā							Ā							
	TEMP	500		Ā			4	Ā	Ā						4					
		850		Ā	Ā			Ā	Ā				Ā						1	
		250	Ī	Ā	Ā		Ā	Ā					Ā		Ā			Ā		
	HGT	500	1	Ā	Ā	Ā	-	Ā	Ā		-		Ā	Ā	Ā	Ā		Ā	+	
		850	Ī	Ā	<u> </u>	<u> </u>		<u> </u>	<u> </u>			Ā	Ā	Ā	Ā	Ā	Ā	Ā	+	
		250	1	Ā	Ā	-		1	_		-	Ā	Ā	Ā	1	Ī	1	1		
	UWND	500	17	ī	7						-	7	Ā	T					-	
		850	17	ī	1	1	1				-	1	Ā	ī	1	Ā	1	Ā	+	-
		250	17	ī	Ā	1	ī				-	1	ī	1	1	1	ī		-	\vdash
	VWND	500	17	ī	Ā	-	-	-			-	1	Ā	Ā	-	-	-		-	-
SH		850	17	ī	ī	1	1			\vdash	-	1	Ŧ	1	1	Ā	1	1	-	⊢
		250	17	ī	Ā	-	-	1			-	1	Ā	Ī	Ā	ī	Ā	Ā	+	-
	TEMP	500	17	1	1	1	1	1	-		-	1	T	1	1	1	1	1	+	-
		850	17	ī	Ā	1	1	1			-	1	Ā	-		-	÷	÷	+	-
		250	17	ī	1	1	-				-	1	ī				1 A	1 Å	+	\vdash
	HGT	500	17	-		-					-	1	-	1	1	-	1	1	+	-
		850	17	1							-	7	÷.	ī	ī	ī	1	17	-	⊢
		250	17	ī	ī	ī	ī				-	7	T	T	17	1	-	T	+	-
	UWND	500	17	1	1	7	1	1	7		-	7	7	1	7	1	1	1	-	-
		850	17	1	1	1	1	1	-		-	7	T	17	7	1	1	17	+	-
		250	17	1	1	7	1	1	1	\vdash	-	7	7	-		7	-		-	⊢
	VWND	500		1	1			17			-		1			1			-	-
TRO		950	I.	1	1	1	1	17	-	\vdash	-	-	-	17	17	17	1	17	-	-
		800						1	-		_	-	+	-					-	-
	TEMP	200		1Ť	1Ť		4		Ť		_	4	-			H	1¥	1¥	-	-
		600	I.	1	.	-	.	1	-	\vdash	_		-						-	-
		850	I.	1	*			1	*	\vdash	_	4	•		–			1	-	-
	UCT	260	1	I.	I.	.	I.	1			_	.			1		17	17	-	
	noi	500	I¥.	I 🗍	4			*	*	\square	_								-	L
		850	14	▲		I ▲ .	I ▲ .	I 🔺 I	A	I		▲		•					1	

: Worse but not eignificant

red: better, green: worse

GRAEPES-PAR against GRAPES (20130801-20130831)

GRAEPES-PAR against T639 (20130801-20130831)

NWPC m

- About GRAPES
- Recent progress of GRAPES_GFS
- Parallel experiment system of GRAPES_GFS
- Future plan

Focus of future work

Reseach:

Improve the ability in assimilating satellite data

Dynamic

- Yin-Yang grid
- Vertical coordinate
- Physics
 - topography-related process
 - Tibet Plateau Field Experiment
 - Macro-physics

Plan before 2015

Operation aims:

Perform 3DVAR on model level
Horizontal resolution: 0. 5° -> 0.25°
Vertical resolution: 36 -> 60 levels
Top layer: 1hPa -> 0.1hPa
>Use GRAPES_GFS to replace T639

Support system: Develop a testbed of GRAPES

Prototype based on ECMWF PrepIFS

THANKS FOR YOUR ATTENTION!

