ECMWF Seminar on Seasonal Prediction, 3-7 Sept. 2012

Multi Model Ensemble seasonal prediction of APEC Climate Center

Jin Ho Yoo, Y.-M. Min, S.-J. Sohn, D.-Y. Lee, H. J. Park, J. Y. Seo and S. M. Oh

Outline

- APCC and operational MME forecast
- Works for more useful products
 - Calibration and correction of MME forecast
 - Deterministic and probabilistic
 - Diversification of products
 - Case study : Arctic-East Asia connection

Background

Potential predictability of summer rainfall

APEC CLIMATE CENTER

Benefit of Multi Model Ensemble

$$R_{MM} = \frac{\langle R \rangle}{\sqrt{V(\langle y \rangle)}} = \frac{\langle R \rangle}{\sqrt{\langle r \rangle}}$$
$$\langle R \rangle = \frac{1}{M} \sum_{i} R_{i} \quad \langle r \rangle = \frac{1}{M^{2}} \sum_{i} \sum_{j} \frac{\overline{y_{i} y_{j}}}{V}$$

Independent and good models : Best forecast result (on average)

APEC CLIMATE CENTER

Beauty of Democracy

- Independent and Rational individuals :
 - Best decision for society (in a long run)

Operational MME initiatives

- Need and scientific evidences for useful operational services of seasonal forecast based on MME
- International techincal cooperation (APEC recommends)
- APEC Climate Network was (APCN) proposed at 1998

Establishment

Located at Busan, Korea ~45 staffs from 5 economies

- 1998 The creation of the APEC Climate
 Network (APCN) was proposed at the 3rd
 APEC Science and Techonology Ministers
 Meeting in Mexico.
- semi operation function in 2004
 2004 APEC Climate Center was proposed at the 27th APEC Industrial Science and Technology Working Group meeding in Singapore.
- 2005 APEC member economies unanimously endorsed the establishment of APCC at the 1st APEC Senior Officials Meeting in Korea.
- 2005. Nov. APCC was established

APCC Goals

• Facilitating the sharing of high-cost climate data and information

 Capacity building in prediction and sustainable social and economic applications of climate information

• Accelerating and extending socio-economic innovation

APCC operational Multi Model Ensemble forecast

Operational Multi Model Ensemble

- Seasonal Forecast

- Global climate forecast collected from 17 institutes (9 countries) issue Monthly rolling 3-month MME climate forecast
- Researches on intraseasonal to climate change projection, Extreme events (drought/flood) forecast, regional downscaling

APEC CLIMATE CENTE

Multi-Institutional Cooperation

Procedure of Seasonal Forecasts

MME Forecasts output: T, P

Participating models

Name/ Economy	Hindcast Period	SST Specification (Hindcast/Forecast)	Ense mble (H/F)	Name/ Economy	Start Year/Month
BCC China	1983-2008	Predicted SST/ Predicted SST	8/8	JMA Japan	1979-2008
COLA U.S.A.	1982-2002	OISSTv2/ IRI SST Forecast	10/10	NIMR Korea	1979-2009
CWB Chinese Taipei	1981-2005	Predicted SST/ Predicted SST	10/10	MGO Russia	1979-2004
GCPS Korea	1979-2009	Predicted SST/ Predicted SST	12/12	MSC_CanCM3 Canada	1981-2009
GDAPS_F Korea	1979-2009.	Predicted SST/ Predicted SST	20/20	MSC_CanCM4 Canada	1981-2009
HMC Russia	1979-2003	Persistent SST/ Persistent SST	10/10	NASA U.S.A.	1981-2009
IAP China	1979/Jan.	Observed SST/ IAP-TOGA SST Forecast	7/7	NCEP U.S.A.	1982-2008
IRI U.S.A	1979-2005	Observed SST/ Persistent SST	24/24	PNU Republic of Korea	1980-2009
IRIF U.S.A	1979-2005	Observed SST/ Predicted SST	24/24	POAMA Australia	1982-2006

Ense

mble

(H/F)

5/51

10/10

6/10

10/10

10/10

9(10)/

9(10)

15/15

10(3)/

10(3)

30/30

SST Specification

(Hindcast/Forecast)

Predicted SST/

Predicted SST

Persistent OISST/

Persistent OISST Observed SST/

Persistent SST Predicted SST/

Predicted SST Predicted SST/

Predicted SST

Predicted SST/

Predicted SST

Predicted SST/

Predicted SST

Predicted SST/

Predicted SST/

Predicted SST/

Predicted SST

* Shaded: coupled model; red: participing models in MME; grey: not available now

MME Schemes

<u>Deterministic Forecast:</u>

- **Simple Composite Method (SCM)**: Simple composite of individual forecast with equal weighting
- **Stepwise Pattern Projection Method** (**SPM**; Kug et al. 2008): Calibrated MME which is obtained from the adjusted (or corrected) single-model predictions based on a stepwise pattern projection method
- **Multiple Regression Method (MRG**; Krishnamurti et al. 2000): Empirically weighted MME with coefficient computed by multiple linear regression
- Synthetic Multi-Model Super Ensemble Method (SSE; Yun et al. 2003): Empirically weighted MME with EOF-filtered data

Probabilistic Forecast:

- **Probabilistic Multi-Model Ensemble (PMME**; Min et al. 2009): Probabilistic MME based on position of the forecast PDF in respect to the historical PDF using Gaussian fitting method

Probabilistic MME

O Characteristics of the APCC operational models

• Inconsistencies between the model ensemble sizes in hindcast and forecast, with the individual model ensembles essentially differing in size

How to Combine Forecast Probabilities?

1 Equal weight (EW)

2 Weights proportional to the ensemble size (ES; Taylor 1997)

→ An increase of the ensemble size of a single model improves its performance because it reduces the standard error (SE; e.g., Robertson et al. 2004; Hagedorn et al. 2005).

$$SE = \frac{\sigma}{\sqrt{n}}$$

 σ : standard deviation of the model spread *n* : model ensemble size

③ Weight proportional to the squared root of the ensemble size (PMME)

→ Inversely proportional to the maximum error in forecast probability associated with the standard error of the mean

 $P(E_{j}) = \frac{1}{\sum_{i=1}^{M} \sqrt{n_{i}}} \sum_{i=1}^{M} \sqrt{n_{i}} P(E_{j} \mid mdl_{i})$

 $P(E_j | mdl_i)$: probability of the model of the j event, conditioned on the i model n : size of the sample

Comparison of Different Combinations

Precipitation

Focus on the most appropriate method for use in an operational global prediction system

Difficult to develop an optimal method in a realistic situation (Yoo and Kang 2005; Weigel et al. 2008)

- The PMME prediction shows consistently good performance for both variables and three regions.
- The PMME method is the appropriate choice for the operational approach for global probabilistic forecast.

Forecast Probability

Dissemination and Publicity

✓ <u>How To Release</u> APCC MME Forecast Issues

- E-mailing (to: 773 recipients) and Webcast (at: www.apcc21.org)
- **Deliverables** by E-mail:
 - **Climate Outlook** (incl. Climate Highlights and Forecast Outlook)
- Information available via Website:
 - **Details** such as monthly and regional prediction, and relevant verification

✓ <u>How To Share</u> APCC MME Forecast Data and Technology

- **CLIK** (<u>http://clik.apcc21.net</u>): 2-way tool kit to facilitate data exchange and downscaling
- ADSS (<u>http://cis.apcc21.net</u>) and TRACE (<u>http://trace.apcc21.net</u>)
 - : protocols to exchange climate data and information

CLIK On-line Climate Information Toolkit

http://clik.apcc21.net

WHEN

Year 2010 \$

VARIABLES

PROVIDER

🗆 всс

NASA

METHODS

SCM \$

Predict

GCPS

O PREC

- Web-based tool for data retrieval and climate prediction
- Customized 3-MON Multi-Model Ensemble Prediction
- Produce over 1,200 MME Prediction & 600 Verification results by user requests
- 3,882 visited CLIK came from 497 cities since March 2009 and the visiting count is continuously increasing

CLIK On-line statistical downscaling feature

Step 3. Set-up Downscaling

Selecting stations for downscaling

- CLIK generates downscaling result based on user's selection with user's observation data and MME data which many institutions contributed
- User can recognize which stations data and MME data are reasonable for downscaling of specified area through the result

User can upload/modify their own
 observation data for downscaling though CLIK

• CLIK provides customized downscaling feature, so user can select conditions for each downscaling

Downscaling result for each station

MME Comparison: ACC (1983-2003)

Temperature

MME Comparison: ACC (2005-2010)

Calibration and correction of Multi Model Ensemble forecast ENSEMBLE MEAN FORECAST

Step-wise Pattern Projection Method (SPM) MME

- Simple composite of individual model forecasts, after statistical correction by pattern projection method (SPM; Kug et al. 2008)
 - $P = \frac{1}{M} \sum_{i=1}^{M} \hat{Y}_i$ M: number of forecast models $\hat{Y}_i: \text{ corrected forecast of } i^{\text{th}} \text{ model}$
- SPM: based on the large-scale patterns of the predicted variables by models (predictors) correlated with a local (or grid) observed variable (predictand)

Predictor area (selected no. in cross-validation)

Temperature

Number of selected variable as an optimal predictor in a cross-validation mode for summer mean temperature and precipitation during 23 years (as an example, JMA model).

Corrected MME Prediction System

 Corrected by SPM-based statistical correction methods based on the linear correlation between the model and observed patterns

Temporal Cor. (JJA, 1983-2003)

(a) Temperature

(b) Precipitation

• Contour: Statistically significant at 5% level using Student t-test

Precipitation

- IM: Indian Monsoon
- WNPM: WNP Monsoon
- EAM: East Asia Monsoon
- AM: Australian Monsoon

Anomaly Pattern Cor–RMSE Diagram (1983-2003)

Calibration and correction of Multi Model Ensemble forecast PROBABILISTIC FORECAST

Calibrated PMME Prediction System

Effects of Model Correction and Combination

Effects of Variance Inflation

Standard Deviation of IAV

noINF: corrected and combined MME prediction without variance inflation **INF**: corrected and combined MME prediction with variance inflation

Operational vs. Calibrated PMME Prediction

CNT: operational PMME prediction (control forecast) **EXP**: calibrated PMME prediction (experimental forecast)

Operational vs. Calibrated PMME Prediction

Aggregated ROC score for temperature

CNT: operational PMME prediction (control forecast) **EXP**: calibrated PMME prediction (experimental forecast)

Diversification of products USER DEFINED CATEGORICAL FORECAST

Tercile (?)

- Critical value to be predicted
- Decisions relying on previous year(s)'s experiences

Towards Early warning system for fire and haze in Indonesia

2010 Probabilistic Forecast (Climatology)

Probabilistic forecast

Below Normal Above

2010 Probabilistic Forecast (Last Year)

OBS Category 90N 60N 30N EQ 30S 60S 90S 60E 120E 180 120W 60W 0 0 Below Above

Temperature

Probabilistic forecast

Verification: Aggregated ROC Curve and Score

CL: with respect to climatology LY: with respect to last year AN: Above-normal BN: Below-normal

Verification: Aggregated Brier Skill Score

Precipitation (2009/2010JJA)

Risk(?) management RECENT IMPACT OF ARCTIC REGION TO E.ASIA WINTER

Failure of East Asia winter temperature forecast

Failure of East Asia winter temperature

ARTI & EA T2M Relationship

OBS COR (ARTI & T2M)

2000-2010

Arctic and Mid-Lat. temperature

T & GPH (0-130E)

Weak Temperature Gradient

Weakened Westerlies

More Frequent intrusion of Cold Polar air to Mid-latitude

The zonal mean structure for the monthly-mean anomalous air temperature (shading) and zonal wind (contour) regressed on the ART index during DJF. The variables are averaged between 0° and 130°E.

From Kug et al. 2012

Temporal Correlation Coefficient (DJF, 1981-2002)

Area-averaged Correlation Coefficient (DJF, 1981-2002)

Sea ice, snow initialization: NCEP, PNU → forecast
 JMA, POAMA → climatology

COR (ARTI & T2M, 1981-2002)

-0.9-0.7-0.5-0.3-0.1 0.1 0.3 0.5 0.7 0.9

Contour: significant at 5% level

What if we can predict Arctic temperature precisely? + Statistical post processing

Replace artic temperature (north of 75N) with observation in CFS hindcast and see if SPM can transfer this information into lower latitude.

MME Forecast Skill (DEC, 1981-2010)

MME Forecast Skill (JAN, 1981-2010)

MME Forecast Skill (FEB, 1981-2010)

Summary

- APCC MME : the mixture of forecasts from operational centers and research groups (could be the largest collection of forecasts)
 - APCC plays a role as a mid-fielder in Climate Services
- The calibration/correction (SPM) does something noticeable but need to be *calibrated* more for operational use
- Attempts on the more forecast products
- Recent failure of EA forecast might be attributable for Arctic region : chance of additional predictability or not? due to climate change

