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This paper addresses the on-going activities in the development of efficient methods for computing the non-
linear four-wave interactions in operational discrete third-generation wind-wave models. It is generally assumed 
that these interactions play an important role in the evolution of wind generated surface gravity waves. 
Therefore, present day wave models contain parameterizations of these interactions. Despite the fact that a 
closed mathematical formulation is available for the description of these interactions, a full solution is not 
applicable in operational modelling as it requires excessive computational requirements. To overcome this 
limitation, various approximate methods have been developed that retain most of the basic properties of the full 
solution. However, the present operational parameterisations of these interactions have various weaknesses that 
degrade model performance and which generally lead to too broad spectra. Efficient and more accurate 
algorithms are therefore needed to improve model performance. As with each approximate method, a gain in 
computational speed goes together with a loss in accuracy in evaluating the basic integral, but this may not 
translate in less accurate wave model results. Therefore the definition of efficiency in the context of approximate 
methods for computing the four-wave interactions is addressed. Two main lines of development are identified in 
the development of efficient algorithms: extended Discrete Interaction Approximations, and reduced quasi-exact 
solution techniques. 

1. Introduction 

It is generally assumed that non-linear four-wave interactions play an important role in the evolution 
of wind generated waves. A closed formulation exists to compute in which way these interactions 
exchange energy within a wave spectrum. However, this method requires huge computational effort 
because it is written as a six-fold integral with two delta-functions ensuring conservation of wave 
energy, wave action and wave momentum. Because of this complicated structure, the full solution is 
not applicable in operational wave prediction methods. This holds especially for third-generation 
discrete spectral methods in which each relevant physical process is parameterised via a source term 
and in which no constraints are imposed on the spectrum. To achieve an operationally feasible model, 
many approximate methods have been developed. These approaches differ in many ways and each has 
its own advantages and disadvantages from a modelling point of view.  

Developing a good computational method for the non-linear four-wave interactions (Snl4) requires 
finding a balance between computational requirements and accuracy. In this search one can 
distinguish two approaches: finding an efficient way to approximate the full (exact) solution of the 
non-linear transfer rate for a limited set of wave spectra, or develop an efficient parameterisation that, 
in combination with other source terms, reproduces model behaviour in comparison to a wave model 
including an exact method for these interactions.  

The aim of this paper is twofold. Firstly, to present an overview of the present developments to 
efficiently compute the non-linear four-wave interactions in operational discrete spectral wave 
prediction models. Secondly, to discuss the concept ‘efficient’ in relation to computational 
requirements, accuracy, model performance and types of application.  
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2. Computation of non-linear four-wave interactions 

2.1. Basic approach 

The first description of the energy transfer between four different wave components was given by 
Phillips (1960). His theory of non-linear four-wave interactions was further extended to a random sea 
independently by Hasselmann (1962) and Zakharov (1968), and the resulting six-fold integral is 
known as the Boltzmann integral or kinetic equation, respectively. This integral describes the rate of 
change of wave action density ni for the wave number vector k1 due to resonant interactions with three 
other wave number vectors k2, k3 and k4  according to: 
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in which the δ-functions reflect the resonance conditions which also ensure conservation wave 
energy, wave action and wave momentum. The corresponding radian frequencies ωi are coupled with 
the wave number ki via the linear dispersion relation. The term G is the coupling coefficient which is a 
complicated function of the four wave number vectors k1, k2, k3 and k4 and depth. Expressions for this 
term in deep water were provided by Hasselmann (1962) and simplified by Webb (1978) and in a 
slightly corrected form by Dungey and Hui (1979). A shallow water version of the coupling 
coefficient was given by Herterich and Hasselmann (1980).  

The important role of these non-linear four-wave interactions became clear in the analysis of the 
JONSWAP experiment (Hasselmann et al., 1973), where it was concluded that the down shifting of 
the peak frequency and the growth at the forward face of the spectrum during wave growth can be 
attributed to the nonlinear transfer to longer waves. Also, it became evident that the non-linear 
interactions are also responsible for shape stabilization of wind wave spectra. Non-linear four-wave 
interactions play a role at large and small time scales. An overview of its role in wind wave evolution 
can be found in e.g. Young and Van Vledder (1993).  

After the JONSWAP experiment various computational methods were developed to evaluate the 
transfer integral and to study the properties of these interactions. These can be distinguished in 
analytical and numerical methods. As no analytical solution exists for the transfer rate for an arbitrary 
spectrum, first analyses were restricted to idealized narrow peaked spectra. Such analyses were 
performed by Longuet-Higgins (1976) and Fox (1976) who were able determine some basic principles 
of the interactions. This concept was extended by Dungey and Hui (1979) who introduced a first order 
approximation with respect to spectral width. These analytical expressions can be used to test 
numerical methods to evaluate the transfer integral, but so far this has seldom been done. 

The first numerical method to evaluate the transfer integral was developed by Sell and Hasselmann 
(1972). Further progress was made by Hasselmann and Hasselmann (1981) who developed a 
symmetrical method which became the main part of the EXACT-NL model (SWAMP, 1982). This 
model is a one-dimensional discrete spectral wave model capable of either computing fetch- or 
duration limited wave growth in combination with the then state-of-the-art source terms for wind 
growth and white-capping. The EXACT-NL model has been used to study e.g. the existence of 



VAN VLEDDER, G. PH.: EFFICIENT ALGORITHMS FOR COMPUTING NON-LINEAR FOUR-WAVE INTERACTIONS 

ECMWF Workshop on Ocean Waves, 25-27 June 2012 99 

equilibrium wave spectra (Komen et al., 1984), the source term balance in shallow water (Weber, 
1988), and the directional response of wind waves in turning winds (Van Vledder and Holthuijsen, 
1993).  

2.2. Analytical methods 

The mathematical structure of the Boltzmann integral (2.1) is difficult to cast in a computational 
method as all kinds of advanced numerical techniques need to be applied to handle the δ-functions. 
However, it can be rewritten in a more manageable form by analytically integrating over the δ-
functions. Integrating over the δ-functions effectively reduces the six-fold integral into a three-fold 
integral, although the integration space is a multi-dimensional manifold in wave number space. 
Further, this space has to satisfy the resonance conditions or, equivalently, the conservation laws.  

Analytical methods were developed by various researchers each making different choices in their 
analytical transformations. Three main methods exist, which mainly differ in the choice of 
transformation variables to eliminate the δ-functions and to handle singularities in the integration 
domain. The first method is due to Webb (1978), whose method describes the rate of change of action 
density at wave number vector k1 as a function of wave number vectors k1 and k3. The second method 
is due to Masuda (1980) whose basic transformation variables are the wave number vectors k3 and k4. 
The third method is due to Lavrenov (2001) who introduced Gaussian quadrature formulas adapted to 
these singularities arising from the transformations.   

Each of these analytical methods has been cast into a numerical solution technique. The Webb (1978) 
approach has been cast in the so-named WRT-method based on work of Tracy and Resio (1982). 
Resio and Perrie (1991) extended the WRT method to shallow water and Van Vledder (2006) made 
an operational version of the WRT method, which is now implemented in various third-generation 
wave models as an option to accurately estimate the non-linear four-wave interactions in discrete 
spectral wave models. The Masuda (1980) method has been cast in the RIAM (Research Institute for 
Applied Mathematics) method, to which Komatsu and Masuda (1986) and Hashimoto et al. (1998) 
have contributed. The Lavrenov (2001) method has been cast into an operational code by Gagnaire-
Renou et al. (2010) and is known as the Gaussian Quadrature Method (GQM). These three quasi-
exact methods are also denoted as Xnl, derived from eXact Non-Linear transfer.  

As each of these methods is based on the same basic integral, one would expect that these methods 
yield the same non-linear transfer rate for a given spectrum. Surprisingly, an inter-comparison to 
check the mutual equivalence has never been done, although each developer has used computational 
results of Hasselmann’s method to verify each approach. Therefore, a statement that these methods 
give the same answer cannot yet be given. Difficulties arise as each computational method contains 
various internal assumptions that may affect the final result. For example, the WRT contains an 
integration over a closed locus in wave number space and the distribution and number of grid points 
along the locus and choice of quadrature rule affect the final answer. The other methods also have 
internal methods and assumptions unknown which may affect the final outcome.   

As each of these three computational methods is used as a benchmark for the development of 
approximation, it is all the more important that such an inter-comparison is carried out. Such an inter-
comparison is now (2012) in progress by a team now consisting of G.Ph. van Vledder, M. Benoit, N. 
Hashimoto, H.L. Tolman and D.T. Resio. This inter-comparison follows the philosophy of the 
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SWAMP (1982) study and focuses firstly on computing as accurately as possible the non-linear 
transfer rate for a set of discrete energy density spectra with varying peakedness, directional width 
and spectral resolution. In this step differences in results will probably appear that might be related to 
the way each method is organized internally. In the next step, effects of internal switches, like 
handling of symmetries, treatment of the parametric tail, quadrature rules, smoothness of the wave 
spectrum and other assumptions will be varied to evaluate the computational requirements and 
accuracy of each method. Such a comparison enables making objective statements about model 
efficiency in relation to accuracy. In the third step, each computational method will be implemented in 
a simple wave prediction model, viz. supplementing it is with the same source terms for wind input 
and whitecapping dissipation, to study the dynamic behaviour of such a model and to assess whether 
the integration produces the same result and stable.  

A property of Eq. (2.1) is that all interactions between resonant wave numbers in a discrete wave 
spectrum can be expressed as the sum of triple products of wave action densities (Snyder et al, 1993; 
Van Vledder, 2005). This feature makes it possible to quantify the degrees of freedom of any 
computational method for Snl4 by counting the number of unique triple products of energy densities 
at discrete frequency-direction bins (or equivalently wave number-direction bins). 

3. Discrete Interaction Approximations 

3.1. Initial development 

The EXACT-NL model was the first third-generation wave prediction model in which no constraints 
were imposed on the spectral shape. Due to its computational requirements, this model, as well as the 
above mentioned quasi-exact methods, is not suited for operational wave predictions. This problem 
was more or less solved by the development of the Discrete Interaction Approximation or DIA 
(Hasselmann et al., 1985). This development resulted in the first operational third generation wave 
prediction model WAM (WAMDI, 1988). In the DIA only one set of all possible wave number 
configurations is used to exchange wave energy between four wave number vectors. The essential 
feature of the DIA is that the wave number k1 and k2 are equal to each other and that the position of 
the wave numbers k3 and k4 are determined by a shape parameter λ. The frequencies in the DIA are 
related according to:  
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The shape of a typical wave number configuration and its mirror image is shown in Figure 3.1 with 
λ=0.25. For this configuration the wave numbers vectors k3 and k4 make an angle of 11.48° and 
33.56° with the wave number vectors k1 and k2, respectively.  
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Figure 3.1: Wave number configuration of the classic Discrete Interaction Approximation with 
λ=0.25 and its mirror image in the interaction diagram (from Van Vledder, 2006) 

The change of energy density δSnl4 at each of the four (actually three) wave number vectors is given 
by  
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Here, Ei are the energy densities at the interacting wave numbers and g is the gravitational 
acceleration. In the DIA proposed by Hasselmann et al. (1985) the ‘classic parameter values are 
Cnl4=3×106 and λ=0.25. This choice of parameters was obtained by some testing in order to be able to 
reproduce as good as possible empirical growth curves of wave energy and peak period, not by 
attempting to reproduce the exact non-linear transfer rate for a given wave spectrum as accurately as 
possible. This configuration was also adopted by the WAM group (WAMDI, 1988) and used in the 
WaveWatch model (Tolman, 1991) and the SWAN model (Booij et al., 1999).  

K. Hasselmann and S. Hasselmann (1984, personal communication) realized that a better DIA could 
be achieved with a multiple DIA. In fact, they originally proposed a second configuration with λ=0.15 
and a weight of 3.75×105. This second configuration never made it to the WAM model, and 
subsequent third-generation models like SWAN and WaveWatch, it was realized that the added 
accuracy of this second configuration did not weight up against the extra computational requirements. 
At that time, a single DIA configuration took almost 40% of the total CPU time of a wave model run. 
The added accuracy of the double DIA to represent the non-linear transfer rate was partly degraded by 
the then state-of-the-art source terms for wind input and whitecapping dissipation. This situation 
forced wave modellers to tune their wave models to compensate for the errors in the parameterisations 
of relevant physical processes. Limitations of DIA were already know by Hasselmann et al. (1985), 
but its practical limitations became to become clear after years of experience (e.g. Van Vledder et al., 
2000), too much transfer of wave energy towards higher frequency and too wide spectra both in 
frequency and in direction space. As long as their host models contain the DIA, wave model 
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development was hampered as errors in the DIA needed to be compensated by tuning of the other 
source terms. The last decades much progress has been made in the development of better source term 
for wave growth and decay. Therefore, better algorithms for efficiently computing the non-linear 
transfer rate in wind-wave spectra were needed.  

Adding more λ-configurations was the next step (it is noted that the initial double DIA by 
Hasselmann and Hasselmann was not considered). Multiple DIA’s were proposed by e.g. Van 
Vledder et al. (2000) and by Hashimoto and Kawaguchi (2001). The coefficients of these MDIA’s 
were obtained by least-squares methods to minimize the error of such a DIA in comparison with the 
exact solution for a limited set of test spectra. At that time these MDIA’s were not applied in dynamic 
model runs to verify whether they also provided improved model performance. This development was 
not successful as DIA’s that are solely based on adding λ-configurations have a finite ability to 
approach the exact solution because they consist of only one of many possible types of wave number 
configurations; as can be seen in Figure 3.1, the λ-configurations all lie on one of many possible 
interaction curves. This exhaustion for multiple λ-based DIA’s was shown by Van Vledder (2005) 
who showed that the number of unique triple products of energy densities reached a limit for about 6 
λ-configurations while at the same time the error with respect to the exact transfer rate did not 
decrease anymore.  

The theoretical limitations of the classic DIA were taken away by the introduction of the generalized 
DIA by Van Vledder (2001b) and Rasmussen (personal communication, 2001). This generalized DIA 
is able to represent any resonant wave number configuration by introducing two additional parameters 
µ and ∆θ, which, together with the parameter λ, can define any wave number configuration. This 
extended DIA has the following relations between the frequencies of the interacting wave numbers.  
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The form proposed by Van Vledder (2001b) was cast into symmetric form by Tolman (2003) 
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The angles of the interacting wave number vectors can be obtained by straightforward algebra (Van 
Vledder, 2006; Tolman, 2012). 
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3.2. Shallow water aspects 

In WAMDI (1988) a simple method was proposed to include finite depth effects on the nonlinear 
transfer rate. Firstly, the nonlinear transfer rate is computed assuming deep water. Secondly, the 
resulting transfer rate is multiplied with a constant factor R.  

( ) ( ) ( )4 4, ,h
nl nlS f S f R xθ θ∞= ×               (3.5) 

This factor R is a function of the dimensionless water depth x=kmh (with h water depth and km a mean 
wave number), and constant for all spectral components of the spectrum. In this scaling the shape of 
the 2D non-linear transfer rate does not change, whereas in reality this shape changes. An illustration 
of this mismatch can be seen in Van Vledder and Bottema (2002). This mismatch in non-linear 
transfer rates has consequences for wave evolution in shallow water. A straightforward solution to this 
problem is to derive a shallow water DIA in which the interacting wave numbers satisfy the linear 
dispersion relationship and where the coefficient of proportionality depends on the water depth and 
the wave numbers in each resonant configuration as illustrated in Figure 3.2. 

 

Figure 3.2: Modification of resonant wave number configuration in deep and shallow water based 
on a DIA wave number configuration with λ=0.25, µ=0 and ∆θ=0, for various water depths 
(from Van Vledder and Bottema, 2002). 

Further progress was made by Tolman (2012) who derived improved scaling laws for the non-linear 
transfer rate in shallow water and combined it with the concept of a multiple DIA with arbitrarily 
shaped configuration into the Generalized Multiple DIA (GMD). The change of energy density in 
each of the four interaction wave numbers according to the GMD can be written as:  
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In which Cdeep, Cshallow are coefficients of proportionality and Bdeep and Bshallow are scaling functions 
representing weak and strong interactions, respectively, Ei the energy densities at the interaction wave 
numbers ki and cgi their group velocities. The numbers nd and ns denote the number of deep and 
shallow water configuration. Details of the GMD can be found in Tolman (2012).  

With (3.7) a method is available to improve the DIA to any desired degree of accuracy. The problem 
of improving the DIA has now been reduced to finding the expansion of wave number configurations 
and related coefficients of proportionality. However, deriving such an extended DIA is a major 
challenge as no simple principle exists to make a sequence of such configurations. 

3.3. Determining the coefficients of DIA’s 

The parameters of any DIA, including all DIA’s from the classic DIA of Hasselmann et al. (1985) to 
the GMD of Tolman (2012), can be optimized in various ways. Initially, the shape and magnitude of 
DIA configurations were determined by minimizing the error between the exact non-linear transfer 
rate and the one from a DIA for a limited set of test spectra. This approach has various problems. The 
first problem is to find a set of representative test spectra, such that an optimized DIA is able to 
accurately represent all model spectra that might occurs in a wave model run. This goal can hardly be 
achieved as there are infinitely many possible spectral shapes; the number of degrees of freedom is 
simply too large. A second problem is to find a procedure of adding additional configurations. Such a 
procedure does not yet exist, also because an optimal DIA with, say, n configurations will probably 
have different configurations as a DIA with (n-1) configurations. A third problem is that the 
computational requirements of finding an optimal n-configuration DIA increase exponentially with 
the number of parameters specifying each configuration.  

The above procedure may yield an optimal (multiple and/or generalized) DIA for a given set of test 
spectra (either academic or from measurements). This, however, is no guarantee that it will yield 
improved model performance in dynamic wave models runs as the performance of any wave model 
depends on the interplay of a DIA, as the source term for the non-linear interactions, with the other 
source terms for wave growth and decay. To obtain a proper wave model, also the extended DIA 
should be tuned, either in combination with the other source terms for a set of dynamic model runs, or 
only the parameters of an extended DIA. The latter approach is used in the optimization of the GMD 
(Tolman and Grumbine, 2012) where the optimization is carried out for a fixed set of source terms for 
growth and decay. The benchmark for such an optimization procedure may consist of parametric or 
observed growth curves or pre-computed model runs performed with an exact representation of the 
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non-linear four-wave interactions. Such a method is called a holistic optimization as its primary aim is 
to get optimal model performance. Its secondary aim is to get a proper non-linear transfer rate.  

The first application of the holistic approach was by Hasselmann et al. (1985) who determined the 
coefficients of the single-configuration DIA such that the WAM model could more or less reproduce 
known growth behaviour of the total wave energy and peak frequency. Their procedure led to 
choosing λ=0.25 for the first configuration and λ=0.15 for the second configuration, although the 
latter one was never used. More detailed numerical experiments with a single configuration confirmed 
that the values chosen by Hasselmann et al. (1985) were close to the optimum values.   

The holistic approach was applied by Tolman (2012) to determine the coefficients of various versions 
of the GMD, i.e. with different numbers of deep (nd) and shallow water (ns) configurations, for a 
specific set of source terms for wave growth and decay using the WAVEWATCH III™ model. First, 
a set of benchmark test results was created by performing dynamic model runs using the 
WAVEWATCH III™ model including the WRT method of Van Vledder (2006). These runs include 
e.g. fetch- and duration limited wave growth in deep and shallow water, the ‘homogeneous’ front case 
of Tolman (1992) and a turning wind case. The coefficients of an nd-ns parameter GMD were 
determined by a genetic algorithm (Tolman and Grumbine, 2012). Applying such a genetic algorithm 
is much cheaper than an explicit error mapping procedure to find an optimum configuration (Tolman 
and Grumbine, 2012). Another advantage of this genetic algorithm is that it may avoid getting stuck 
in local minima. This algorithm determines by iteration (or generation) the shape and scale parameters 
of a nd-ns GMD until a certain minimum error measure is obtained. Each generation comprises a set of 
dynamic wave model runs that needs to be performed.  

Tolman (2012) determined various GMD’s with different numbers of deep and shallow water 
configurations. The resulting errors in model behaviour were much smaller to the classic DIA with 
λ=0.25. Applying a multi-configuration GMD increases the computational requirements, but this 
should be considered in view of improved model performance. Tolman (2012) reports that replacing a 
single DIA with a GMD with three configurations, roughly requires 50% extra CPU time of the 
WAVEWATCH III™ model while reducing the average prediction error by 40% in comparison with 
a set of model runs using the WRT formulation. Adding further complexity reduces this prediction 
error at the expense of additional computational requirements. Note that these errors are not related to 
prediction errors in comparison with measurements, although applying the GMD improves the 
predicted spectral shapes. 

The holistic optimization procedure of Tolman and Grumbine (2012) has a few drawbacks. Firstly, 
the results of the optimization procedure depend on the choice of accompanying source terms. There 
is no guarantee that it will have similar model performance in combination with other sets of source 
terms, but it should be noted that such tests have not been done yet. A second drawback is that the 
results may depend on numerical characteristic of the host model, such as spectral discretisation and 
the technique to solve the action balance equation. It is likely that these aspects are of minor 
importance and this should therefore also be tested. The third drawback may be related to the 
representativeness of the set of model runs, it may not yet cover a sufficient amount of conditions 
experienced in operational model runs. However, this limitation may also be an advantage, as the 
GMD may be tuned for a specific set of wave conditions, i.e. fetch-limited wave growth in deep water 
from a straight coast with a constant wind speed and direction. The fourth drawback is related to the 
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computational requirements needed for the genetic optimization. Tolman (2012) reports that about 
O(105) wave model runs are required to find the parameters of a GMD with five configurations. The 
relevance of this drawback depends on the computer resources available at the institute developing a 
certain GMD using this approach.  

4. Bridging the gap between Xnl and DIA’s 

4.1. Finding the optimum algorithm 

For the computation of the non-linear four-wave interactions of a discrete wave spectrum one can 
choose between the accurate but time consuming quasi-exact methods like WRT, RIAM or QGM, or 
one may apply the fast but very inaccurate DIA. Both extremes are undesirable from a modelling 
point of view and many attempts have been carried out to bridge this gap by finding an optimal 
method for computing these interactions, i.e. finding a method that is operationally feasible while 
having sufficient accuracy.  

In the search for an optimal algorithm two concepts play a major role. The first concept is related to 
the computational requirements of a certain method. This largely depends on the computer resources 
available. This may be less a problem for institutes like the ECMWF or NOAA/NCEP, but it may be a 
problem for small engineering companies who need to run a wave model for a long time or for many 
conditions. On the other hand, computer power is still improving in general and the limits of what’s 
possible are still shifting. The second concept is related to accuracy. As stated before, this concept has 
two aspects. The first aspect is related to the ability of an approximate method to represent the exact 
transfer rate. The second aspect is to see an approximate method as part of a wave model in which 
also other source terms play a role, which together determine overall model performance. Preferably, 
both aspects should be of relevance at the same time. However, in the end model performance is often 
preferred no matter what happens inside the wave model.  

The development of the GMD is an important step in bridging the gap between Xnl methods and the 
classic DIA. The results shown by Tolman (2012) are encouraging and provide the opportunity to 
improve model performance in general and spectral shapes in particular with a clearly defined 
procedure. 

Comparing the WRT with a GMD with, say 4 wave number configurations, leads to an interesting 
observation. The number of independent wave number configurations in such a  GMD is of the same 
order as the DIA, but still three orders of magnitude different from the WRT method applied to a 
typical discrete wave spectrum. In view of the overall good performance of the GMD in reproducing 
the non-linear transfer rate (Tolman, 2012), one has to conclude that the WRT method probably has a 
large amount of wave number configurations that do not contribute to the total transfer rate. This 
observation may hold as well for the other Xnl methods like GQM and RIAM. This notion suggests 
that in principle it should be possible to weed out unnecessary wave number configurations or 
combine wave number configurations in Xnl type of methods to improve their efficiency while 
retaining sufficient accuracy. 
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4.2. Reducing Xnl methods 

As noted in the previous section, exact methods take a large number of wave number configurations 
into account in evaluating the non-linear transfer rate for a given discrete wave spectrum. Based on 
the performance of the GMD (Tolman, 2012), it is likely that many of those configurations are not 
necessary. Reducing the computational requirements of exact methods can be achieved in various 
ways. Van Vledder (2006) suggests a number of approaches to reduce the workload of the WRT 
method by applying mathematical or numerical methods. Similar approaches may hold as well for the 
RIAM and GQM. Taking advantage of the specific inner workings of the WRT method, savings are 
possible by reducing the number of points in the evaluation of the locus integral or applying higher 
order quadrature rules for the locus integration; by replacing bi-linear interpolation by a nearest bin 
approach to find the energy density (or action density) at the resonant wave number vectors; or by 
applying filtering assuming that with increasing distance in wave number space between the basic 
wave number vectors k1 and k3 the contribution to the total transfer rate decreases sufficiently to 
ignore these parts of the integration space.  

The advantage of such methods is that the reduction of the workload is done in a mathematically 
consistent way independent of the characteristics of the wave spectra on which it is applied. Because 
of this property, competitive reduced versions of Xnl-type methods may be developed that provide a 
generic solution to improve model performance. Such an approach is generic in the sense that such a 
method does not depend on the other source terms in the wave model, or on the set of wave model 
runs needed to derive a GMD. A possible approach to achieve this goal is presented in the next 
section based on the WRT method. 

4.3. Equivalence of WRT and DIA 

 The WRT method is able to compute the non-linear transfer rate to any desired degree of accuracy. In 
the WRT method the rate of change of action density ni at wave number k1 can be expressed as: 

 ( )1
3 3 3 1 3,n k dk d T

t
θ∂

=
∂ ∫∫ k k                  (4.1) 

In which T is a one-dimensional integral along a closed loop in wave number space 

( ) ( ) ( ) ( )1 3 1,2,3,4,
s

T ds G s J s N s= × × ×∫k k              (4.2) 

Where s is the local variable along the locus, G(s) is the coupling coefficient, J(s) the Jacobean term 
and N1,2,3,4(s) is the wave number product. Details can be found in Van Vledder (2006). Closer 
inspection of the integration along the locus reveals that for a given combination of the wave number 
vectors k1 and k3, discrete points of the loci for k2 and k4 form individual resonant wave number 
configurations. This is illustrated in Figure 4.1 for one set of points on these loci. The left panel shows 
the position of the arbitrarily chosen wave number vectors k1 and k3, together with the locus for k2 
(black curve) and the locus of k4 (red curve). The right panel shows one of the possible wave number 
configurations. This particular wave number configuration can be considered as an arbitrarily shaped 
DIA-type configuration for which the shape parameters λ, µ and ∆θ can be determined. Next the 
strength of this interaction can be deduced from piece wise integration along the locus.  
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Figure 4.1: Wave number configuration based on discretisation of the integration along a locus in 
wave number space 

In the WRT method changes are only made to each of discrete wave number vectors k1 and k3, based 
on the results of the integration along the locus. In the DIA changes are made simultaneously to all 
four wave numbers involved in a wave number configuration. However, due to various symmetries in 
the transfer (Boltzmann) integral they produce basically the same results. The principle of detailed 
balance forms the connection between both methods.  

4.4. Other approaches 

Apart from Xnl methods and extended DIA’s many other types of approximate methods have been 
developed to compute the non-linear transfer rate. Full descriptions of these methods are not given 
here, and the reader is referred to the associated references. The overview is probably incomplete and 
no conclusions can be drawn about the order in which these methods are mentioned. 

• Neural networks have been explored by e.g. Krasnopolsky et al., 2002, 2003; Tolman and 
Krasnopolsky (2004), Tolman et al, (2005) and Wahle et al.  (2009). 

• Resio and Perrie (2009) and Perrie and Resio (2010) developed the Two-Scale 
Approximation (TSA) in which an arbitrary spectrum is divided into a broad scale spectrum 
for which the exact non-linear transfer rate can be pre-computed with the WRT method, and 
into a residual spectrum whose contribution to the total transfer rate is approximated.  

• Diffusion approaches were explored by Zakharov and Pushkarev (1999), Pushkarev et al. 
(2004), and Jenkins and Phillips (2001). 

• Komatsu (1996) made a reduced version of the RIAM method in which 20 basic wave 
number configurations were taken into account. This SRIAM method is similar to a multiple 
DIA. 

• Perrie et al. (2010) develop the Advance Dominant Interaction (AvDI) by selecting part of the 
phase space in WRT type methods. The selection applied results from a neural network to 
determine which part of the basic locus integrals should be taken into account.  
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All of these methods have specific advantages to estimate the non-linear transfer rate to a certain 
degree. However, in the author’s opinion they are not flexible enough to be able to compute this 
transfer rate to any degree of accuracy for an arbitrary spectrum. 

5. Discussion 

In the last decade much progress has been made in developing operational methods for computing the 
non-linear transfer rate in discrete spectral wave prediction models (cf. Van Vledder, 2001a). Starting 
from the classical DIA with only one wave number configuration, new developments have been made 
in developing multiple generally shaped wave number configurations and incorporating shallow water 
effects. In this line of development, the GMD is presently the most advanced method available, 
although its applicability may be limited in some ways. Starting from exact methods operational 
versions have been developed like the WRT, GQM and RIAM method for academic studies (e.g. 
Gagnaire-Renou et al., 2010). These exact methods are also used as benchmarks for developing 
approximate methods. These three exact methods are all based on the same basic integral but their 
practical equivalence has not yet been tested. However, an inter-comparison study is now under way 
to objectively compare their performance in relation to computational requirements and resulting 
accuracy. 

Shallow water effects are now included in the computational methods on the basis of the work of 
Herterich and Hasselmann (1980), either in the coupling coefficient in the exact methods or in 
parameterised form in the DIA methods. However, these parameterisations may change in view of 
recent insights into the transfer rate in intermediate and shallow water by e.g. Janssen and Onorato 
(2007) who show that the transfer rate reduces to zero for kh=1.363. The implications of these insights 
on wave evolution in inter-mediate depth are now being explored. The present basic equations for 
computing the non-linear four-wave interactions (Eq. 2.1) are based on the assumption of a 
homogeneous and stationary wave field. In practical applications these assumptions are often violated. 
Gramstad and Stiassnie (2012) investigated the effect of near-resonant conditions in non-stationary 
conditions as this may lead to faster evolution than on the ‘Hasselmann time scale’.  

6. Conclusions 

The following conclusions can be formulated regarding the ongoing development of efficient 
algorithms for the computation of non-linear four-wave interactions in operational discrete spectral 
wave prediction models:  

• The concept “efficient algorithm” must primarily be considered in relation to model 
performance and computational requirements, not only in relation to its ability to approximate 
the exact non-linear transfer rate to any desired degree of accuracy; 

• Model efficiency should also be considered in view of the envisaged type of model 
application, as one may develop algorithms dedicated to a specific application; 

•  The GMD is a good bottom-up candidate for inclusion in an operational wave model, but it 
may still have limited ability due to its dependence on the set of other source terms and set of 
model runs for which it has been developed. These possible limitations should be determined; 

• Reduced Xnl based top-down approaches may provide a generic solution to efficiently 
compute the non-linear interactions for discrete wave spectra;  
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• The differences between the quasi-exact methods (WRT, RIAM and GQM) must be 
objectively charted to be able to draw conclusions about their performance, both in terms of 
computational requirements as well as in terms of their accuracy; 

• The consequences of modulational instabilities in intermediate water depth and the effects of 
near-resonant conditions on wave evolution need further attention.  
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