Ensemble Filtering in the Presence of Nonlinearity and Non-Gaussianity

\triangleright Chris Snyder
National Center for Atmospheric Research, Boulder Colorado, USA

Preliminaries

Notation

\triangleright follow Ide et al. (1997) generally, except:
$\ldots \operatorname{dim}(\mathbf{x})=N_{x}, \operatorname{dim}(\mathbf{y})=N_{y}$
\ldots subscript $j: k$ indicates times $t_{j}, t_{j+1}, \ldots, t_{k}$,
... superscripts index ensemble members, or iterations
$\triangleright \sim$ means "distributed as," e.g. $x \sim N(0,1)$
\triangleright state evolution: $\mathbf{x}_{k}=M\left(\mathbf{x}_{k-1}\right)+\eta_{k}$
\triangleright observations: $\mathbf{y}_{k}=H\left(\mathbf{x}_{k}\right)+\epsilon_{k}$

Basic Facts

1. Conditional pdf $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ is the answer
\triangleright summarizes everything that can be known about state
\triangleright calculate sequentially, via Bayes rule,

$$
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)=p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k-1}\right) / p\left(\mathbf{y}_{1: k}\right)
$$

\triangleright algorithms that do not produce $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ cannot be fully optimal

Basic Facts (cont.)

2. Linear, Gaussian systems are relatively easy
$\triangleright p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ is Gaussian and thus determined by its mean and covariance
\triangleright posterior (analysis) mean is linear in prior (background) mean and observations
\triangleright no need to choose between posterior mean (min variance) and posterior mode (max likelihood) as "best" estimate; they are equal.
\triangleright 4D-Var and Kalman filter (KF) agree; so does ensemble KF (EnKF) up to sampling error.

Basic Facts (cont.)

3. High-dimensional pdfs are hard
$\triangleright p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ is a continuous fn of N_{x} variables. Direct approaches not feasible; discretization with n points per variable requires $n^{N_{x}}$ d.o.f.
\triangleright they are extraordinarily diffuse

Basic Facts (cont.)

3. High-dimensional pdfs are hard
$\triangleright p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ is a continuous fn of N_{x} variables. Direct approaches not feasible; discretization with n points per variable requires $n^{N_{x}}$ d.o.f.
\triangleright they are extraordinarily diffuse
Consider $\mathbf{x} \sim N(0, \mathbf{I})$.

Basic Facts (cont.)

3. High-dimensional pdfs are hard
$\triangleright p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$ is a continuous fn of N_{x} variables. Direct approaches not feasible; discretization with n points per variable requires $n^{N_{x}}$ d.o.f.
\triangleright they are extraordinarily diffuse

Consider $\mathbf{x} \sim N(0, \mathbf{I})$.
1 dimension: points with $p(\mathbf{x})$ less than 0.01 of max account for less than 1% of mass of pdf.
10 dimensions: they account for about $1 / 2$.

Outline

Nonlinearity and the ensemble Kalman filter (EnKF)
\triangleright Relation to the BLUE
\triangleright Iterative schemes

Particle filters

\triangleright Required N_{e} grows exponentially w/ "problem size"
\triangleright Importance sampling and the optimal proposal density

Outline

Nonlinearity and the ensemble Kalman filter (EnKF)
\triangleright Relation to the BLUE
\triangleright Iterative schemes

Particle filters

\triangleright Required N_{e} grows exponentially w/ "problem size"
\triangleright Importance sampling and the optimal proposal density
Not a comprehensive review!

The Best Linear Unbiased Estimator (BLUE)

Desire an estimate of \mathbf{x} given observation $\mathbf{y}=H(\mathbf{x})+\epsilon$
\triangleright Consider linear estimators, $\hat{\mathbf{x}}=\mathbf{A y}+\mathbf{b}$
\triangleright Which \mathbf{A} and \mathbf{b} minimize $E\left(|\mathbf{x}-\hat{\mathbf{x}}|^{2}\right)$?

The BLUE (cont.)

The BLUE is the answer
\triangleright Let $\overline{\mathbf{x}}=E(\mathbf{x})$ and $\overline{\mathbf{y}}=E(\mathbf{y})=E(H(\mathbf{x}))$
\triangleright Then BLUE is given by (e.g. Anderson and Moore 1979)

$$
\hat{\mathbf{x}}=\overline{\mathbf{x}}+\mathbf{K}(\mathbf{y}-\overline{\mathbf{y}}), \quad \mathbf{K}=\operatorname{cov}(\mathbf{x}, \mathbf{y}) \operatorname{cov}(\mathbf{y})^{-1}
$$

\triangleright Only need 1st and 2nd moments; no requirement that \mathbf{x}, ϵ are Gaussian or H is linear

Useful benchmark for nonlinear, non-Gaussian systems
$\triangleright \ldots$ though $E(\mathbf{x} \mid \mathbf{y})$ has smaller expected squared error

Relation of EnKF to the BLUE

Start with \mathbf{x}^{f} drawn from $p(\mathbf{x})$
EnKF update specifies a random, linear fn of \mathbf{x}^{f} and \mathbf{y}
\triangleright EnKF:

$$
\begin{gathered}
\mathbf{x}^{a}=\mathbf{x}^{f}+\mathbf{K}\left(\mathbf{y}-H\left(\mathbf{x}^{f}\right)-\epsilon\right) \\
\mathbf{K}=\operatorname{cov}\left(\mathbf{x}_{k}, H\left(\mathbf{x}_{k}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{k}\right)\right)+\mathbf{R}\right]^{-1}
\end{gathered}
$$

$\triangleright \mathbf{x}^{a}$ has mean and covariance matrix given by BLUE formulas
$\triangleright \mathbf{x}^{a}$ need not be Gaussian
\triangleright in linear, Gaussian case, \mathbf{x}^{a} has same distribution as $\mathbf{x}_{k} \mid \mathbf{y}_{1: k}$

Relation of EnKF to the BLUE

Start with \mathbf{x}^{f} drawn from $p(\mathbf{x})$
EnKF update specifies a random, linear fn of \mathbf{x}^{f} and \mathbf{y}

- EnKF:

$$
\begin{gathered}
\mathbf{x}^{a}=\mathbf{x}^{f}+\mathbf{K}\left(\mathbf{y}-H\left(\mathbf{x}^{f}\right)-\epsilon\right) \\
\mathbf{K}=\operatorname{cov}\left(\mathbf{x}_{k}, H\left(\mathbf{x}_{k}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{k}\right)\right)+\mathbf{R}\right]^{-1}
\end{gathered}
$$

$\triangleright \mathbf{x}^{a}$ has mean and covariance matrix given by BLUE formulas
$\triangleright \mathbf{x}^{a}$ need not be Gaussian
\triangleright in linear, Gaussian case, \mathbf{x}^{a} has same distribution as $\mathbf{x} \mid \mathbf{y}$
The EnKF is a Monte-Carlo implementation of the BLUE and, as $N_{e} \rightarrow \infty$, shares its properties.

Relation of EnKF to the BLUE

Start with \mathbf{x}^{f} drawn from $p(\mathbf{x})$
EnKF update specifies a random, linear fn of \mathbf{x}^{f} and \mathbf{y}

- EnKF:

$$
\begin{gathered}
\mathbf{x}^{a}=\mathbf{x}^{f}+\mathbf{K}\left(\mathbf{y}-H\left(\mathbf{x}^{f}\right)-\epsilon\right) \\
\mathbf{K}=\operatorname{cov}\left(\mathbf{x}_{k}, H\left(\mathbf{x}_{k}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{k}\right)\right)+\mathbf{R}\right]^{-1}
\end{gathered}
$$

$\triangleright \mathbf{x}^{a}$ has mean and covariance matrix given by BLUE formulas
$\triangleright \mathbf{x}^{a}$ need not be Gaussian
\triangleright in linear, Gaussian case, \mathbf{x}^{a} has same distribution as $\mathbf{x} \mid \mathbf{y}$
The EnKF is a linear method. It is optimal for linear, Gaussian systems but does not assume Gaussianity.

BLUE/EnKF Illustrated
$\triangleright \quad p(\mathbf{x})$ and ensemble

BLUE/EnKF Illustrated

$\triangleright p(\mathbf{x} \mid y)$ for $y=x_{1}+$ noise $=1.1$ and EnKF analysis ensemble (dots)

\triangleright sample retains non-Gaussian curvature but does not capture bimodality

EnKF and Non-Gaussianity

Different EnKF schemes respond differently
\triangleright All variants of EnKF produce same sample mean and 2nd moment
\triangleright Other (non-Gaussian) aspects of updated ensemble depend on specific scheme
\triangleright Deterministic/"square root" filters are more sensitive to nonGaussianity (Lawson and Hansen 2004, Lei et al. 2010)

Nonlinear update in observation space
\triangleright EnKFs that process obs one at a time can be written as update of observed quantity followed by regression onto state variables.
\triangleright Observation update is scalar and can use fully nonlinear techniques (Anderson 2010)

Iterative, Ensemble-Based Schemes
Motivation for iterations
\triangleright EnKF is a linear scheme
\triangleright Mean and mode of $\mathbf{x}_{k} \mid \mathbf{y}_{1: k}$ are nonlinear fns of $\mathbf{y}_{1: k}$; iteration is natural for weak nonlinearity (e.g. 4DVar)

Can EnKF be improved through iteration?
How to formulate iterations?

Iterative, Ensemble-Based Schemes (cont.)

Several ideas
\triangleright Minimize non-quadratic $J(\mathbf{x})$ with \mathbf{x} restricted to ensemble subspace (Zupanski 2005)
\triangleright Perform series of N assimilations, each using same $\mathbf{y}_{1: k}$ but with obs-error covariance $N^{-1} \mathbf{R}$; first analysis provides prior for second, etc. (Annan et al. 2005)
\triangleright Repeated application of EnKF update, mimicking the outer loop of 4DVar (Kalnay and Yang 2010)

Iterative, Ensemble-Based Schemes (cont.)

Several ideas
\triangleright Minimize non-quadratic $J(\mathbf{x})$ with \mathbf{x} restricted to ensemble subspace (Zupanski 2005)
\triangleright Perform series of N assimilations, each using same $\mathbf{y}_{1: k}$ but with obs-error covariance $N^{-1} \mathbf{R}$; first analysis is provides prior for second, etc. (Annan et al. 2005)
\triangleright Repeated application of EnKF update, mimicking the outer loop of 4DVar (Kalnay and Yang 2010)

4DVar and an Iterated Ensemble Smoother

Incremental 4DVar \equiv sequence of Kalman smoothers

- Linearization of M and H about \mathbf{x}^{n} makes inner-loop $\hat{J}(\delta x)$ quadratic; thus minimization of \hat{J} is equivalent to Kalman smoother
$\triangleright n$th Kalman-smoother update is

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{f}+\mathbf{K}_{0 \mid 1: N_{t}}\left[\mathbf{y}_{1: N_{t}}-\left(H\left(\mathbf{x}_{1: N_{t}}^{n}\right)+\mathbf{H}\left(\mathbf{x}_{1: N_{t}}^{f}-\mathbf{x}_{1: N_{t}}^{n}\right)\right)\right]
$$

\triangleright see also Jazwinski (1970, section 9.7)

4DVar and an Iterated Ensemble Smoother

Incremental 4DVar \equiv sequence of Kalman smoothers
$\triangleright n$th Kalman-smoother update is

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}^{f}{ }_{0}+\mathbf{K}_{0 \mid 1: N_{t}}\left[\mathbf{y}_{1: N_{t}}-\left(H\left(\mathbf{x}_{1: N_{t}}^{n}\right)+\mathbf{H}\left(\mathbf{x}_{1: N_{t}}^{f}-\mathbf{x}_{1: N_{t}}^{n}\right)\right)\right]
$$

Approximate iterated KS using ensemble ideas
\triangleright Make usual replacements:

$$
\begin{aligned}
& \mathbf{H} \delta \mathbf{x}_{k}^{f} \approx H\left(\mathbf{x}^{f}{ }_{k}\right)-H\left(\mathbf{x}_{k}^{n}\right), \\
& \mathbf{K}_{0 \mid 1: N_{t}} \approx \hat{\mathbf{K}}_{0 \mid 1: N_{t}}=\operatorname{cov}\left(\mathbf{x}_{0}, H\left(\mathbf{x}_{1: N_{t}}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{1: N_{t}}\right)\right)+\mathbf{R}_{1: N_{t}}\right]^{-1}
\end{aligned}
$$

\triangleright Ensemble ICs drawn from $N\left(\mathbf{x}_{0}^{n}, \mathbf{P}_{0}^{f}\right)$ to approximate linearization about \mathbf{x}^{n} in H and M.
\triangleright Ensemble mean at iteration $n+1$ given by

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}^{f}{ }_{0}+\hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}\left(\mathbf{y}_{1: N_{t}}-\overline{H\left(\mathbf{x}_{1: N_{t} t}\right)}\right)
$$

\triangleright Same as usual update, but gain changes at each iteration

Kalnay-Yang Iteration for Ensemble KS

"Running in place" from Kalnay and Yang (2010)
\triangleright Ensemble mean at iteration $n+1$ given by

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{n}+\hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}\left(\mathbf{y}_{1: N_{t}}-\overline{H\left(\mathbf{x}_{1: N_{t}}\right)}\right)
$$

\triangleright Innovation is recalculated using most recent guess and gain changes at each iteration
\triangleright Intended to speed spin up of EnKS when initial estimate of \mathbf{P}_{0}^{f} is poor

Converges to observations when H and M are linear
\triangleright Let $\mathbf{L}^{n}=\mathbf{I}-\mathbf{H}^{T} \hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}$. Easy to show

$$
\mathbf{H} \mathbf{x}_{0}^{n+1}=\left(\prod_{m=1}^{n} \mathbf{L}^{m}\right) \mathbf{H} \mathbf{x}_{0}^{f}+\left(\mathbf{I}-\prod_{m=1}^{n} \mathbf{L}^{m}\right) \mathbf{y}
$$

\triangleright Properties in nonlinear case are unclear

Simple Example: Hénon Map

Hénon map

\triangleright state is $2 \mathrm{~d}, \mathbf{x}=\left(x_{1}, x_{2}\right)$
\triangleright iterate map twice in results here
\triangleright Note: subscripts denote components of \mathbf{x} !
An example
\triangleright Gaussian ICs at t_{0} ("initial time")
\triangleright observe $y=x_{1}+\epsilon$ at t_{1} ("final time")
\triangleright update state at t_{0}, t_{1}

Simple Example (cont.)

\triangleright prior at t_{1}

Simple Example (cont.)

\triangleright prior at t_{0}, with value of $x_{1}\left(t_{1}\right)$ shown by colors

Simple Example (cont.)

\triangleright RMS estimation error, averaged over realizations as fn of y

Particle Filters (PFs)

Sequential Monte-Carlo method to approximate $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right)$
\triangleright particles \equiv ensemble members

- like EnKF, generates samples from desired pdf, rather than pdf itself

Particle Filters (cont.)

The simplest PF

$\triangleright \operatorname{given}\left\{\mathbf{x}_{k-1}^{i}, i=1, \ldots, N_{e}\right\}$ drawn from $p\left(\mathbf{x}_{k-1} \mid \mathbf{y}_{1: k-1}\right)$
$\triangleright \mathbf{x}_{k}^{i}=M\left(\mathbf{x}_{k-1}^{i}\right)+\epsilon_{k}$; this gives a sample from $p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k-1}\right)$.
\triangleright approximate this prior as sum of point masses,

$$
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k-1}\right) \approx N_{e}^{-1} \sum_{i=1}^{N_{e}} \delta\left(\mathbf{x}-\mathbf{x}_{k}^{i}\right)
$$

\triangleright Bayes \Rightarrow

$$
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right) \propto p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right) \sum_{i=1}^{N_{e}} \delta\left(\mathbf{x}-\mathbf{x}_{k}^{i}\right)=\sum_{i=1}^{N_{e}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right) \delta\left(\mathbf{x}-\mathbf{x}_{k}^{i}\right)
$$

\triangleright thus, posterior pdf approximated by weighted sum of point masses

$$
p\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: k}\right) \approx \sum_{i=1}^{N_{e}} w_{i} \delta\left(\mathbf{x}-\mathbf{x}_{k}^{i}\right), \quad \text { with } \quad w_{i}=\frac{p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right)}{\sum_{j=1}^{N_{e}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right)}
$$

Particle Filters (cont.)

Asymptotically convergent to Bayes rule
\triangleright PF yields an exact implementation of Bayes' rule as $N_{e} \rightarrow \infty$; no approximations other than finite ensemble size

Can be exceedingly simple
\triangleright main calculations are for w_{i}, e.g. $p\left(\mathbf{y} \mid \mathbf{x}_{k}^{i}\right)$ for $i=1, \ldots, N_{e}$.
Widely applied, and effective, in low-dim'l systems
\triangleright Interest for geophysical systems too: van Leeuwen $(2003,2010)$, Zhou et al. (2006), Papadakis et al. (2010), hydrology

PF Illustrated

$\triangleright p(\mathbf{x})$, as before, and prior ensemble

PF Illustrated

$\triangleright p(\mathbf{x} \mid \mathbf{y})$ and "weighted" ensemble (size \propto weight)

\triangleright weighted ensemble captures bimodality
\triangleright particles don't move; assimilation is just re-weighting

"Collapse" of Weights

A generic problem for PF
$\triangleright \max w^{i} \rightarrow 1$ as N_{x}, N_{y} increase with N_{e} fixed
\triangleright when cycling over multiple observation times, tendency for collapse increases with t

Simple Example

\triangleright prior: $\mathbf{x} \sim N(0, \mathbf{I})$
\triangleright identity observations: $N_{y}=N_{x}, \mathbf{H}=\mathbf{I}$
\triangleright observation error: $\epsilon \sim N(0, \mathbf{I})$

Behavior of max w^{i}
$\triangleright \quad N_{e}=10^{3} ; N_{x}=10,30,100 ; 10^{3}$ realizations

Required ensemble size

$\triangleright N_{e}$ s.t. PF mean has expected error less than obs

Required ensemble size (cont.)

Collapse occurs because w_{k}^{i} varies (a lot) with i
\triangleright variance of weights (over particles, given \mathbf{y}) is controlled by

$$
\tau^{2}=\operatorname{var}\left(-\log \left(p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}\right)\right)\right)
$$

\triangleright involves only obs-space quantities-no direct dependence on N_{x}
Conditions for collapse
\triangleright if $N_{e} \rightarrow \infty$ and $\tau^{2} / \log \left(N_{e}\right) \rightarrow \infty$,

$$
E\left(1 / \max w^{i}\right) \sim 1+\frac{\sqrt{2 \log N_{e}}}{\tau}
$$

\triangleright see Bengtsson et al. (2008), Snyder et al. (2008) for details
\triangleright thus, weights collapse $\left(\max w^{i} \rightarrow 1\right)$ unless N_{e} scales as $\exp \left(\tau^{2} / 2\right)$

Refinements of PF

Resampling

\triangleright "refresh" ensemble by resampling from approximate posterior pdf; members with small weights are dropped, while additional members are added near members with large weights (e.g. Xiong et al. 2006, Nakano et al. 2007)
\triangleright Does not overcome difficulties with PF update but reduces tendency for collapse over time

Sequential importance sampling
\triangleright generate \mathbf{x}_{k}^{i} using information beyond system dynamics and \mathbf{x}_{k-1}^{i}

Importance Sampling

Basic idea

\triangleright Suppose $\pi(\mathbf{x})$ is hard to sample from, but $q(\mathbf{x})$ is not.
\triangleright draw $\left\{\mathbf{x}^{i}\right\}$ from $q(\mathbf{x})$ and approximate

$$
\pi(\mathbf{x}) \approx \sum_{i=1}^{N_{e}} w^{i} \delta\left(\mathbf{x}-\mathbf{x}^{i}\right), \quad \text { where } w^{i}=\pi\left(\mathbf{x}^{i}\right) / q\left(\mathbf{x}^{i}\right)
$$

\triangleright call $q(\mathbf{x})$ the proposal density

Importance Sampling (cont.)

$\triangleright \quad p(\mathbf{x})$, as before, and prior ensemble

\triangleright Want to sample from $p(\mathbf{x} \mid \mathbf{y})$
\triangleright IS says we should weight sample from $p(\mathbf{x})$ by $p(\mathbf{x} \mid \mathbf{y}) / p(\mathbf{x})=p(\mathbf{y} \mid \mathbf{x})$

Importance Sampling (cont.)

$\triangleright p(\mathbf{x} \mid \mathbf{y})$ and "weighted" ensemble (size \propto weight)

Sequential Importance Sampling

Perform IS sequentially in time
\triangleright Given $\left\{\mathbf{x}_{0}^{i}\right\}$ from $q\left(\mathbf{x}_{0}\right)$, wish to sample from $p\left(\mathbf{x}_{1}, \mathbf{x}_{0} \mid \mathbf{y}_{1}\right)$
\triangleright Note factorization:

$$
p\left(\mathbf{x}_{1}, \mathbf{x}_{0} \mid \mathbf{y}_{1}\right) \propto p\left(\mathbf{y}_{1} \mid \mathbf{x}_{1}, \mathbf{x}_{0}\right) p\left(\mathbf{x}_{1}, \mathbf{x}_{0}\right)=p\left(\mathbf{y}_{1} \mid \mathbf{x}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}\right) p\left(\mathbf{x}_{0}\right)
$$

\triangleright choose proposal of the form

$$
q\left(\mathbf{x}_{1}, \mathbf{x}_{0} \mid \mathbf{y}_{1}\right)=q\left(\mathbf{x}_{1} \mid \mathbf{x}_{0}, \mathbf{y}_{1}\right) q\left(\mathbf{x}_{0}\right)
$$

\triangleright update weights using

$$
w_{1}^{i} \propto \frac{p\left(\mathbf{x}_{1}^{i}, \mathbf{x}_{0}^{i} \mid \mathbf{y}_{1}\right)}{q\left(\mathbf{x}_{1}^{i}, \mathbf{x}_{0}^{i} \mid \mathbf{y}_{1}\right)}=\frac{p\left(\mathbf{y}_{1} \mid \mathbf{x}_{1}^{i}\right) p\left(\mathbf{x}_{1}^{i} \mid \mathbf{x}_{0}^{i}\right)}{q\left(\mathbf{x}_{1}^{i} \mid \mathbf{x}_{0}^{i}, \mathbf{y}_{1}\right)} w_{0}^{i}
$$

Sequential Importance Sampling (cont.)

Choice of proposal is known to be crucial
Simplest: transition density as proposal
\triangleright take $q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right)$; i.e. evolve particles from t_{k-1} under system dynamics
\triangleright weights updated by $w_{k}^{i} \propto w_{k-1}^{i} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right)$

Sequential Importance Sampling (cont.)

An "optimal" proposal (e.g. Doucet et al. 2000)
$\triangleright q\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}\right)=p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}, \mathbf{y}_{k}\right)$; use obs at t_{k} in proposal at t_{k}
\triangleright Papadakis et al. (2010) use this; van Leeuwen (2010) is similar
\triangleright weights updated by $w_{k}^{i} \propto w_{k-1}^{i} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k-1}^{i}\right)$
\triangleright for linear, Gaussian systems, easy to show that w_{k}^{i} behaves like case with prior as proposal, but $\operatorname{var}\left(\log \left(p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k-1}^{i}\right)\right)\right)$ is quantitatively smaller, by amount depending on \mathbf{Q}.
N_{e} still grows exponentially, but w/ reduced exponent
\triangleright For fixed problem, benefits can be substantial, e.g.,

$$
\begin{aligned}
& \operatorname{var}\left(\log \left(p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k-1}^{i}\right)\right)\right)=\alpha \operatorname{var}\left(\log \left(p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right)\right)\right) \Rightarrow \\
& \quad \text { ensemble size for } p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k-1}^{i}\right) \sim\left[\text { ensemble size for } p\left(\mathbf{y}_{k} \mid \mathbf{x}_{k}^{i}\right)\right]^{\alpha}
\end{aligned}
$$

Mixture (or Gaussian-Sum) Filters

Approximate pdfs as sums of Gaussians
\triangleright Start with $\left\{\mathbf{x}^{i}, \mathbf{P}^{i}\right\}$. Approximate prior pdf as

$$
p(\mathbf{x})=\sum_{i=1}^{N_{e}} w^{i} N\left(\mathbf{x} ; \mathbf{x}^{i}, \mathbf{P}^{i}\right)
$$

\triangleright To compute $p(\mathbf{x} \mid \mathbf{y})$ must update w^{i} (via PF-like eqns) and $\mathbf{x}^{i}, \mathbf{P}^{i}$ (via KF-like eqns); see Alspach and Sorenson (1972)
\triangleright Geophysical interest: Anderson and Anderson (1999), Bengtsson et al. (2003), Smith (2007), Hoteit et al. (2011)

Limitations
\triangleright Update of weights subject to collapse, as in PF; closely related to optimal proposal if we choose $\mathbf{P}^{i}=\mathbf{Q}$
\triangleright Must update $\left\{\mathbf{x}^{i}, \mathbf{P}^{i}\right\}$ in addition to weights

Summary

EnKF as approximation to BLUE
\triangleright EnKF \neq assume everything is Gaussian
\triangleright Non-Gaussian aspects depend on specific EnKF scheme
Iterated ensemble smoother
\triangleright Mimics incremental 4DVar but not equivalent (except in linear, Gaussian case!)
\triangleright Innovation fixed, gain changes at each iteration
Particle filters
\triangleright For naive particle filter, N_{e} increases exponentially with problem size
\triangleright Potential for PF using more clever proposal distributions
\triangleright Evidence that these lead to N_{e} that still increases exponentially, but with smaller exponent

Comments

How important is non-Gaussianity for our applications?
A key idea missing from PFs (so far) is localization

Selected References

Nonlinear modifications of the EnKF:

Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Monthly Wea. Rev., 129, 2884-2903.

Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Monthly Wea. Rev., 138, 4186-4198.

Annan, J. D., D. J. Lunt, J. C. Hargreaves and P. J. Valdes, 2005: Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlin. Processes Geophys., 12, 363-371.

Bengtsson T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Research, 108(D24), 8775-8785.

Harlim, J., and B. R. Hunt, 2007: A non-Gaussian ensemble filter for assimilating infrequent noisy observations Tellus, 59A, 225-237.

Kalnay, E. and S.-C. Yang, 2010: Accelerating the spin-up of ensemble Kalman filtering. Q. J. R. Met. Soc., 136, 1644-1651.

Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Monthly Wea. Rev., 133, 1710-1726.

Particle filters:

Arulampalam, M. S., S. Maskell, N. Gordon and T. Clapp, 2002: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Processing, 50, 174-188.

Bengtsson, T., P. Bickel and B. Li, 2008: Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems. IMS Collections, 2, 316-334. doi: 10.1214/193940307000000518.

Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput., 10, 197-208.

Gordon, N. J., D. J. Salmond and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings-F, 140, 107-113.
van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q. J. R. Met. Soc., 136, 1991-1999.
van Leeuwen, P. J., 2003: A variance-minimizing filter for large-scale applications. Monthly Wea. Rev., 131, 2071-2084.

Nakano, S., G. Ueno and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlin. Processes Geophys., 14, 395-408.

Papadakis, N., E. Mémin, A. Cuzol and N. Gengembre, 2010: Data assimilation with the weighted ensemble Kalman filter. Tellus, 62A, 673-697.

Snyder, C., T. Bengtsson, P. Bickel and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Monthly Wea. Rev., 136, 4629-4640.

Xiong, X., I. M. Navon and B. Uzunoglu, 2006: A note on the particle filter with posterior Gaussian resampling. Tellus, 58A, 456-460.

Zhou, Y., D. McLaughlin and D. Entekhabi, 2006: Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Monthly Wea. Rev., 134, 2128-2142.

Gaussian-sum filters (like particle filters, but approximate prior distribution as a sum of Gaussians centered on ensemble members):

Alspach, D. L., and H. W. Sorensen, 1972: Nonlinear Bayesian estimation using Gaussian sum approximation, IEEE Trans. Autom. Control, 17, 439-448.

Anderson, J. L., and S. L. Anderson, 1999: A Monte-Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly Wea. Rev., 127, 2741-2758.

Bengtsson T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Research, 108(D24), 8775-8785.
Smith, K. W., 2007: Cluster ensemble Kalman filter. Tellus, 59, 749-757.
Hoteit, I., X. Luo and D.-T. Pham, 2011: Particle Kalman filtering: A nonlinear Bayesian framework for ensemble Kalman filters. Monthly Wea. Rev.,accepted.

4DVar and an Iterated Kalman Smoother

Recall 4DVar

\triangleright Consider perfect model/strong constraint for simplicity here. \mathbf{x}_{0} determines $\mathbf{x}_{1: N_{t}}$ through $\mathbf{x}_{k}=M\left(\mathbf{x}_{k-1}\right)$.
\triangleright Full cost function from $\log \left(p\left(\mathbf{x}_{0} \mid \mathbf{y}_{1: k}\right)\right)$:

$$
\begin{aligned}
J\left(\mathbf{x}_{0}\right)= & \left(\mathbf{x}_{0}-\mathbf{x}^{f}{ }_{0}\right)^{T}\left(\mathbf{P}_{0}^{f}\right)^{-1}\left(\mathbf{x}_{0}-\mathbf{x}^{f}{ }_{0}\right) \\
& +\left(\mathbf{y}_{1: N_{t}}-H\left(\mathbf{x}_{1: N_{t}}\right)\right)^{T} \mathbf{R}_{1: N_{t}}^{-1}\left(\mathbf{y}_{1: N_{t}}-H\left(\mathbf{x}_{1: N_{t}}\right)\right),
\end{aligned}
$$

4DVar and an Iterated Kalman Smoother

Recall incremental 4DVar

\triangleright Linearize about latest guess, $\mathbf{x}_{0: N_{t}}^{n}$; e.g., $H\left(\mathbf{x}_{k}\right) \approx H\left(\mathbf{x}_{k}^{n}\right)+\mathbf{H} \delta \mathbf{x}_{k}$ and $\delta \mathbf{x}_{k}=\mathbf{M}_{k-1} \delta \mathbf{x}_{k-1}$
\triangleright Yields quadratic cost function for increments:

$$
\begin{aligned}
\hat{J}\left(\delta \mathbf{x}_{0}\right)= & \left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{f}\right)^{T}\left(\mathbf{P}_{0}^{f}\right)^{-1}\left(\delta \mathbf{x}_{0}-\delta \mathbf{x}_{0}^{f}\right) \\
& +\left(\delta \mathbf{y}_{1: N_{t}}-\mathbf{H} \delta \mathbf{x}_{1: N_{t}}\right)^{T} \mathbf{R}_{1: N_{t}}^{-1}\left(\delta \mathbf{y}_{1: N_{t}}-\mathbf{H} \delta \mathbf{x}_{1: N_{t}}\right),
\end{aligned}
$$

\triangleright Iteration: Compute $\delta \mathbf{x}_{0}^{a}$ as minimizer of \hat{J}; set $\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{n}+\delta \mathbf{x}_{0}^{a}$; compute $\mathbf{x}_{1: N_{t}}^{n+1}$ and linearize again

Incremental 4DVar $=$ Iterated KS

Equivalent linear, Gaussian system
\triangleright Consider:

$$
\begin{aligned}
& \delta \mathbf{x}_{0} \sim N\left(\delta \mathbf{x}_{0}^{f}, \mathbf{P}_{0}^{f}\right) \\
& \delta \mathbf{x}_{k}=\mathbf{M}_{k-1} \delta \mathbf{x}_{k-1} \\
& \delta \mathbf{y}_{k}=\mathbf{H} \delta \mathbf{x}_{k}+\epsilon_{k}, \quad \epsilon_{k} \sim N\left(0, \mathbf{R}_{k}\right)
\end{aligned}
$$

\triangleright Cost fn from this system is $\hat{J}\left(\delta \mathbf{x}_{0}\right)$ from incremental 4DVar
Iterated Kalman smoother
$\triangleright \delta \mathbf{x}_{0}^{a}=\arg \min \hat{J}$ can also be computed with Kalman smoother:

$$
\delta \mathbf{x}_{0}^{a}=\delta \mathbf{x}_{0}^{f}+\mathbf{K}_{0 \mid 1: N_{t}}\left(\delta \mathbf{y}_{1: N_{t}}-\mathbf{H} \delta \mathbf{x}_{1: N_{t}}^{f}\right)
$$

\triangleright Thus, sequence of KS updates, with $\mathbf{M}_{k}, \mathbf{H}$ and $\mathbf{K}_{0 \mid 1: N_{t}}$ from relinearization about $\mathbf{x}_{1: N_{t}}^{n}$ at each step, reproduces incremental 4DVar
\triangleright Note that initial cov of $\delta \mathbf{x}_{0}$ is \mathbf{P}_{0}^{f}; does not change during iteration
\triangleright see also Jazwinski (1970, section 9.7)

Iterated Ensemble KS

Approximate iterated KS using ensemble ideas
\triangleright Returning to full fields, KS update becomes

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{f}+\mathbf{K}_{0 \mid 1: N_{t}}\left(\mathbf{y}_{1: N_{t}}-\left(H\left(\mathbf{x}_{1: N_{t}}^{n}\right)+\mathbf{H} \delta \mathbf{x}_{1: N_{t}}^{f}\right)\right)
$$

\triangleright Now make usual replacements

$$
\begin{aligned}
& \mathbf{H} \delta \mathbf{x}_{k}^{f} \approx H\left(\mathbf{x}_{k}^{f}\right)-H\left(\mathbf{x}_{k}^{n}\right), \\
& \mathbf{K}_{0 \mid 1: N_{t}} \approx \hat{\mathbf{K}}_{0 \mid 1: N_{t}}=\operatorname{cov}\left(\mathbf{x}_{0}, H\left(\mathbf{x}_{1: N_{t}}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{1: N_{t}}\right)\right)+\mathbf{R}_{1: N_{t}}\right]^{-1}
\end{aligned}
$$

Iterated Ensemble KS

Approximate iterated KS using ensemble ideas
\triangleright Returning to full fields, KS update becomes

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{f}+\mathbf{K}_{0 \mid 1: N_{t}}\left(\mathbf{y}_{1: N_{t}}-\left(H\left(\mathbf{x}_{1: N_{t}}^{n}\right)+\mathbf{H} \delta \mathbf{x}_{1: N_{t}}^{f}\right)\right)
$$

\triangleright Now make usual replacements

$$
\begin{aligned}
& \mathbf{H} \delta \mathbf{x}_{k}^{f} \approx H\left(\mathbf{x}_{k}^{f}\right)-H\left(\mathbf{x}_{k}^{n}\right), \\
& \mathbf{K}_{0 \mid 1: N_{t}} \approx \hat{\mathbf{K}}_{0 \mid 1: N_{t}}=\operatorname{cov}\left(\mathbf{x}_{0}, H\left(\mathbf{x}_{1: N_{t}}\right)\right)\left[\operatorname{cov}\left(H\left(\mathbf{x}_{1: N_{t}}\right)\right)+\mathbf{R}_{1: N_{t}}\right]^{-1}
\end{aligned}
$$

Iteration for ensemble smoother
\triangleright Ensemble ICs drawn from $N\left(\mathbf{x}_{0}^{n}, \mathbf{P}_{0}^{f}\right)$ to approximate linearization about \mathbf{x}^{n} in H and M.
\triangleright Ensemble mean at iteration $n+1$ given by

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}^{f}{ }_{0}+\hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}\left(\mathbf{y}_{1: N_{t}}-\overline{H\left(\mathbf{x}_{1: N_{t}}\right)}\right)
$$

\triangleright Same as usual update, but gain changes at each iteration

Kalnay-Yang Iteration for Ensemble KS

"Running in place" from Kalnay and Yang (2010)
\triangleright Ensemble mean at iteration $n+1$ given by

$$
\mathbf{x}_{0}^{n+1}=\mathbf{x}_{0}^{n}+\hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}\left(\mathbf{y}_{1: N_{t}}-\overline{H\left(\mathbf{x}_{1: N_{t}}\right)}\right)
$$

\triangleright Innovation is recalculated using most recent guess and gain changes at each iteration
\triangleright Intended to speed spin up of EnKS when initial estimate of \mathbf{P}_{0}^{f} is poor

Converges to observations when H and M are linear
\triangleright Let $\mathbf{L}^{n}=\mathbf{I}-\mathbf{H}^{T} \hat{\mathbf{K}}_{0 \mid 1: N_{t}}^{n}$. Easy to show

$$
\mathbf{H} \mathbf{x}_{0}^{n+1}=\left(\prod_{m=1}^{n} \mathbf{L}^{m}\right) \mathbf{H} \mathbf{x}_{0}^{f}+\left(\mathbf{I}-\prod_{m=1}^{n} \mathbf{L}^{m}\right) \mathbf{y}
$$

\triangleright Properties in nonlinear case are unclear

