Challenges and Advances of Regional Ocean Data Assimilation

> Andy Moore Department of Ocean Science University of California Santa Cruz

#### The Large Scale Ocean Circulation



## **Diverse Approach**

#### <u>Global versus Regional</u>

Global –

- ECMWF
- MERCATOR
- ECCO(2)
- NASA/GMAO
- NCOM
- HYCOM
- FOAM
- BLUElink
- SODA
- GLORYS
- Others...

Regional & Nested –

- MFS
- HOPS
- NCOM
- MODAS
- FOAM
- ROMS

### **Methods**

- 3D-Var
- En-3D-Var
- 4D-Var
- Nudging
- EnKF
- SEEK
- MVOI

## Mature Applications

### **Scientific**

### **Practical**

- Ocean analyses
- Climate variability
- Climate change
- ENSO, MOC
- Eddy variability
- Coastal upwelling

- Oil spill (eg. DWH)
- Search and rescue
- Contaminant dispersal (eg. Fukoshima)
- Forecasting (eg.IOOS)
- Fisheries management

## **Overview**

## Part I – Challenges

### Part II – Recent Advances

## Part I - Challenges

- Space- and time-scales
- Observations
- Control vector
- Correlation functions
- Tracers in the ocean
- Initialization shocks

## The California Current Large Marine Ecosystem

#### **Ocean Space- and Time-Scales**





The Ocean Sub-Mesoscale

## **Coastal Upwelling & CCLME**



Upwelling due to wind stress curl Sardines Upwelling due to divergence

Anchovies

Rykaczewski & Checkley (2007)







## **Ocean Observations**





Typical 10 day sample of hydrographic obs for ECMWF global ocean analysis

#### Sea Surface Topography











## **The Ocean Control Vector**



#### **COAMPS Real-Time Forecasts** Products for Atmospheric/Oceanic Forecasting



J. Doyle (NRL)

## **The Ocean Control Vector**

4D-Var Cost function: 
$$J = J_b + J_o$$



ROMS, California Current System, 4D-Var, 7 day cycles

## Prior Error Covariance Modeling







#### Courtesy of Jim Cummings NRL, Monterey (3D-Var)

### <u>Complex Boundaries and</u> <u>Bathymetry</u>







Simon and Bertino (2009) – Interpolated Anamorphosis Functions

## **Initialization Shock**

## **Initialization Shock**



**ROMS + DARWIN, California Current** 

**Courtesy of Kaustubha Raghukumar (UCSC)** 

NMI/DFI and coastally trapped waves?

## Part II – Some Recent Advances

# The Regional Ocean Modeling System (ROMS)

- Diagnostic calculations
  - Obs impact
  - (4D-Var)<sup>⊤</sup>
    - obs sensitivity
    - expected errors of functions
    - towards adaptive sampling

## **ROMS: California Current System (CCS)**

#### 4D-Var applied sequentially every 7 days: Jul 2002-Dec 2004.

- ROMS: PE, hydro, sigma
- 4D-Var: incremental,
  - 1 outer, 20-60 inner
- COAMPS forcing
- ECCO open b.c.s
- 10km, 42 levels (obs impact)
- 30 km, 30 levels (obs sensitivity)



#### Veneziani et al (2009) Broquet et al (2009ab, 2011)



## **Obs Impact vs Obs Sensitivity**



### **Observation Impacts on Analysis Increments**





#### **Prior cross-shore transport**



### **Analysis Cycle – Observation Impacts**



#### **Alongshore Transport Impacts**



## **Obs Impact vs Obs Sensitivity**



### Observation Sensitivity and Observing System Experiments (OSEs)

Change in the obs:  $\delta \mathbf{y}$ 

$$\left(\partial \mathcal{K} / \partial \mathbf{y}\right)^{\mathrm{T}}$$



(4D-Var)<sup>T</sup>

### **Observing System Experiments (OSEs)**

**Altimeter data withheld** 



Observation sensitivity using  $\left(\partial \mathcal{K} / \partial \mathbf{y}\right)^{\mathrm{T}}$ 

### **Posterior Errors**

**Posterior/analysis error covariance:** 



Inspired by ensemble 4D-Var, we can show that:

$$\mathbf{E}^{\mathbf{a}} = \left(\mathbf{I} - \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}}\right)\mathbf{G}\right)\mathbf{B}\left(\mathbf{I} - \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}}\right)\mathbf{G}\right)^{\mathrm{T}} + \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}}\right)\mathbf{R}\left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}}\right)^{\mathrm{T}}$$

(4D-Var)<sup>⊤</sup>

### **Prior and Posterior Errors: 37N Transport**



### **OSEs and Analysis Errors**

**Consider the linear function**  $\mathcal{J}(\mathbf{x}_a) = \mathbf{h}^T \mathbf{x}_a$  (e.g. transport).

The change in the analysis error variance in  $\mathcal{J}(\boldsymbol{x}_{a})$  due to withholding obs:

$$\begin{pmatrix} \tilde{\sigma}_{\mathcal{J}}^{a} \end{pmatrix}^{2} = (\sigma_{\mathcal{J}}^{a})^{2} - 2\mathbf{h}^{\mathrm{T}}\mathbf{B}\mathbf{G}^{\mathrm{T}}\mathbf{W}(\partial\mathcal{K}/\partial\mathbf{d})^{\mathrm{T}}\mathbf{h}$$

$$\uparrow + 2\mathbf{h}^{\mathrm{T}}(\partial\mathcal{K}/\partial\mathbf{d})(\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{W}(\partial\mathcal{K}/\partial\mathbf{d})^{\mathrm{T}}\mathbf{h}$$

$$+ \mathbf{h}^{\mathrm{T}}(\partial\mathcal{K}/\partial\mathbf{d})\mathbf{W}(\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{W}(\partial\mathcal{K}/\partial\mathbf{d})^{\mathrm{T}}\mathbf{h}$$

$$+ \mathbf{h}^{\mathrm{T}}(\partial\mathcal{K}/\partial\mathbf{d})\mathbf{W}(\mathbf{G}\mathbf{B}\mathbf{G}^{\mathrm{T}} + \mathbf{R})\mathbf{W}(\partial\mathcal{K}/\partial\mathbf{d})^{\mathrm{T}}\mathbf{h}$$

$$Analysis error$$

$$assimilating$$

$$all observations$$

### **OSEs and Analysis Errors**

**Analysis error variance of 37N transport:** 



Apparently there is a missing factor of 2 in  $\left( ilde{\sigma}^a_{\cal J}
ight)^2$  –  $\left(\sigma^a_{\cal J}
ight)^2$ 

### **Summary**

- Ocean DA is diverse and mature
- Many basic challenges still exist:
  - expansion of control vector (B?)
  - tracer assimilation
  - initialization shock & filtering
  - vertical projection of satellite obs Continued development of
  - covariance models
  - biogeochemical data assimilation
  - model error
  - internal tides
  - quality control & bias correction
  - air-sea coupling at all scales
- Sub-mesoscale and deep ocean are poorly observed (and poorly constrained)

## **Future**

- Assessment of existing & new observing systems using OSEs and OSSEs
- High res. regional analyses
- Ensemble DA
- Continued development of ocean forecasting systems

### **Acknowledgements**

- Hernan Arango
- Chris Edwards
- Gregoire Broquet
- Brian Powell
- Milena Veneziani
- James Doyle
- Dave Foley
- Anthony Weaver
- Mike Fisher
- Dan Costa
- Patrick Robinson
- Javier Zavala-Garay

- Office of Naval Research
- National Science Foundation
- National Ocean Partnership Program