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Typical convective
parameterization
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Traditional framework
The Arakawa and Schubert (1974) picture

Convection characterised by ensemble of non-interacting
convective plumes within some area of tolerably uniform
forcing

Individual plume equations formulated in terms of mass
flux, Mi = ρσiwi
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Traditional framework

An equilibrium picture: stabilization from the ensemble of
plumes balances destabilization from large-scale forcing

If plume equations are linear in mass flux then can sum
over plumes and approximate ensemble with a
representative “bulk” plume

Microphysics is supposed to be crude by construction

and even cruder under a bulk approximation
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Uncertainties from convection

1. structural: using the wrong equations

2. parameter: entrainment rate is the source of largest
uncertainty in multi-parameter experiments like
climateprediction.net

an entrainment rate is itself a parmeterization of
cloud-environment interactions within the convective
paremeterization and has major structurally
uncertainties

3. an inherently uncertain process: a given “large-scale”
state is consitent with many sub-grid states
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The physics of fluctuations
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Utterly trivial example
Practical approach: seems desirable to introduce noise to
improve spread-error realationship

But the introduction of a stochastic component to our
model equations cannot be agnostic about the physics of
the fluctuations

For example,

∂θ
∂t

+u.∇θ = Pθ(X ,α)+ ε

Pθ is determinstic parameterization; α are parameters; X is the
resolved-scale state; ε is noise
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Change of variables

Consider a change of variables to χ = eθ

∂θ
∂t

+u.∇θ = Pθ(θ,α)+ ε

∂χ
∂t

+u.∇χ = Pχ(χ,α)+ εχ

Additive noise becomes multiplicative noise

These names are meaningless in themselves:

have to ask additive or multiplicative in what?

and with what physical justification?
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Example I: amplified stochastic cycles
Predator-prey system with ∼ 1000individuals (McKane and
Newman 2005)

Accounting for discrete constituents leads to sustained
oscillations with amplified internal variability

Dramatic qualitative difference in response to internal and
environmental/parameter noise
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Example II: SCM mult. noise
Apply mult. noise to
parameterized ∂tT and
∂tq

SCM experiment of a
TOGA-COARE case

Dotted IC uncertainty; black MN;

blue MN decorrelate each

scheme; red MN decorrelate T

and q perturbations

Spread larger than with
quenched random noise

Cp∆T = L∆q in phase
changes matters
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How far have we come in
considering the physics of
convective fluctuations?

Stochastic convection parameterization – p.10/28



An earlier workshop

ECMWF Workshop on Representation of Sub-grid
Processes using Stochastic–Dynamic Models, 6-8 June
2005

Working Group 1 Report: Issues in Convection

it is clear that a stochastic convection scheme is desirable

Issues to be addressed...
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Physical and numerical noise
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Artificial noise
Stiller (2009) N48L38
MetUM

Convection schemes
often shown artificial
on-off behaviour
even if subject to time-invariant

forcing

May need to remove artifi-
cial noise in order to see a
physical source of fluctua-
tions?

Stochastic convection parameterization – p.13/28



Scale-dependence of
parameterization
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Finite cloud number

Convective instability is released in discrete events

The number of clouds in a GCM grid-box is not large
enough to produce a steady response to a steady forcing

In equilibrium, for non-interacting clouds:

pdf of mass flux of a single cloud is exponential

number of clouds in finite-size region is given by
Poisson distribution
Craig and Cohen 2006

Agrees well with CRM data
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Plant and Craig parameterization

Mass-flux formalism...

1. average in the horizontal to determine the large-scale
state

2. evaluate properties of equilibrium statistics: 〈M〉 and 〈m〉
3. draw randomly from the equilibrium pdf to get number and

properties of cumulus elements in the grid box

4. compute convective tendencies from this set of cumulus
elements
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Grid scale 6= large-scale state
Idealized RCE on 3D domain with parameterized
convection, ∆x = 32km

Reproduce theoretical pdf of mass flux by averaging input
over ∼ (160)km2 for ∼ 1hr

But not if using grid-scale input

0 1 2 3 4 5 6

x 10
8

0

1

2

3

4

5

6
x 10

−9

M (kg s−1)

p(
M

)

 

 
data
theory

0 1 2 3 4 5 6 7 8 9

x 10
8

0

1

2

3

4

5

6

7
x 10

−9

M (kg s−1)

p(
M

)

 

 
PCscheme
theory

Stochastic convection parameterization – p.17/28



Prognostic closures
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Prognostic closure

Based on convective-energy-cycle equations

dAi

dt
= Fi − γi jM j ;

dKi

dt
= AiMi −

Ki

τi
;Ki = αiM

2
i

Recent revival of interest (Davies et al 2008, Wagner and
Graf 2010, Yano and Plant 2011)

Can construct stochastic form of these closures for a
finite-size region using cellular automata with simple
birth-death processes

Point is that CA rules are strongly constrained by
demanding that the ode’s are recovered in the limit of
infinite system size
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Numerical example
Timeseries of M for Pan & Randall system, constant forcing
with 〈N〉 = 10 at equilibrium
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Blue: solution of the Pan/Randall ODEs
Green: a single realization of the stochastic CA
Red: ensemble mean of 100 realizations
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Effects of sub-grid variability on
initiation
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Initiation
Various demonstrations that boundary layer fluctuations
can easily shift the locations of precipitating cells e.g.

Leoncini et al (2010)

Perturbation at 2000 UTC, 8 km
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Accounting for fluctuations

Bright and Mullen (2002) tried stochastic triggering
function in Kain-Fritsch

Recent attempts to try a closure of the form
exp(−CIN/TKE) emphasize role of boundary layer
fluctuations, but not done stochastically (e.g. Hohenegger
2011)

What is the correct coupling to the boundary-layer
scheme?

How does a closure based on boundary layer fluctuations
behave in an equilbrium situation?
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Propagation
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Propagation

We have difficulties with propagation and organization of
convection, possibly because of lack of communication
between cells

Cellular-automata based approaches may be able to
improve on this
Bengtsson-Sedlar talk later...

Grandpeix and Lafore (2010) propose simple coldpool
propagation model but only applied in 1D

Not necessarily stochastic!
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Summary

Many uncertainties (structural, parameter, intrinsic)
associated with convection

Discrete nature of cumulus clouds seems to demand a
stochastic approach

Fluctuations increase as ∆x reduces, and must depend on
∆x and intensity

We know how to account for this in equilibrium

But note that number fluctuations of = 2/
√

N implies
a spectral not bulk formulation

We could do this out-of-equilibrium

Far from equilbrium situations need careful coupling of
convective and boundary-layer schemes
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Sampling uncertainty
Spread in column-average T from Plant-Craig scheme as
function of grid-box size
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RP noise
P+C (dx=100km)
P+C (dx=50km)

Similar to mult. noise or random parameters for ∆x = 50km
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MOGREPS trial
Running at ∆x = 24km in MOGREPS ensemble
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Std. dev. in rainfall averaged over (48km)2 (left) and (120km)2

(right)
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