Nonhydrostatic Modeling with NICAM

<u>Research Institute for Global Change, JAMSTEC</u> Advanced Institute for Computational Science, RIKEN

Contents

Numerical method on NICAM Dynamical core

- Horizontal discretization
 - Icosahedral grid
 - Modified by spring dynamics(Tomita et al. 2001, 2002 JCP)
- Nonhydrostatic framework
 - Mass and total energy conservation
 - (Satoh 2002, 2003 MWR)
- Computational strategy
 - Domain decomposition in parallel computer
 - Example of computational performance
- Problems
 - Current problems
 - Future problems
- Summary

NICAM project

NICAM project (~2000)

- Aim :
 - Construction of GCRM for climate simulation
 - Suitable to the future computer environment
 - » Massively parallel supercomputer
 - » First target : Earth Simulator 1 40TFLOPS in peak 640 computer nodes

Strategy:

- Horizontal discretization :
 - Use grid of icosahedarl grid (quasi-homogeneous)
 - Anyway, 2nd accuracy over the globe!
- Dynamics:
 - Non-hydrostatic
 - » Mass & total energy conservation
- Physics :
 - Import from MIROC (one of Japan IPCC models) except for microphysics.

Horizontal discretization

Grid arrangement

Glevel-3 grid & control volume

Arakawa A-grid type

- Velocity, mass
 - triangular vertices

Control volume

- Connection of center of triangles
 - Hexagon
 - Pentagon at the icosahedral vertices

Advantage

- Easy to implement
- no computational mode
 - Same number of grid points for vel. and mass

Disadvantage

- Non-physical 2-grid scale structure
 - E.g. bad geostrophic adjustment

Horizontal differential operator

e.g. Divergence 1. Vector : given at P_i $u(P_i)$ 2. Interpolation of u at Q_i $u(Q_i) \approx \frac{\alpha u(P_0) + \beta u(P_i) + \gamma u(P_{1+mod(i,6)})}{\alpha + \beta + \gamma}$

3. Gauss theorem

$$\nabla \bullet \mathbf{u}(P_0) \approx \frac{1}{A(P_0)} \sum_{i=1}^6 b_i \frac{\mathbf{u}(Q_i) + \mathbf{u}(Q_{1+\text{mod}(i,6)})}{2} \bullet \mathbf{n}_i$$

2nd order accuracy? NO

→ Allocation points is not gravitational center (default grid)

Modified Icosahedral Grid (1)

Reconstruction of grid by spring dynamics

To reduce the grid-noise

1. STD-grid : Generated by the recursive grid division.

dt

2. SPRING DYNAMICS : Connection of gridpoints by springs

$$\sum_{i=1}^{6} k(d_i - \overline{d}) \mathbf{e}_i - \alpha \mathbf{w}_0 = M \frac{d\mathbf{w}_0}{dt}$$
$$\mathbf{w}_0 = \frac{d\mathbf{r}_0}{dt}$$

SPR-grid: Solve the spring dynamics → The system calms down to the static balance

Modified Icosahedral Grid (2)

Gravitational-Centered Relocation

To make the accuracy of numerical operators higher

 SPR-grid: Generated by the spring dynamics. → ●
 CV: Defined by connecting the CC of

Defined by connecting the GC of triangle elements.

 \rightarrow \checkmark

 \rightarrow •

3. SPR-GC-grid: The grid points are moved to the GC of CV.

→ The 2nd order accuracy of numerical operator is perfectly guaranteed at all of grid points.

Improvement of accuracy of operator

	STD-grid	SPR-GC-grid
L_2 norm	Almost 2nd-order(●)	Perfect 2nd-order(°)
I_inf norm	Not 2nd order(^)	Perfect 2nd-order(△)

Nonhydrostatic framework

Next Generation Climate Model

Design of our non-hydrostatic modeling

Governing equation

- Full compressible system
 - Acoustic wave → Planetary wave
- Flux form
 - Finite Volume Method
 - Conservation of mass and energy
- Deep atmosphere
 - Including all metrics terms and Coriolis terms
- Solver
 - Split explicit method
 - Slow mode : Large time step
 - Fast mode : small time step
 - HEVI (Horizontal Explicit & Vertical Implicit)
 - 1D-Helmholtz equation

Governing Equations

 \leftarrow L.H.S. : FAST MODE \rightarrow \leftarrow R.H.S. : SLOW MODE \rightarrow

$$\frac{\partial}{\partial t}R + \nabla_h \cdot \frac{\mathbf{V}_h}{\gamma} + \frac{\partial}{\partial \xi} \left(\frac{W}{G^{1/2}} + \mathbf{G}^3 \cdot \frac{\mathbf{V}_h}{\gamma} \right) = 0$$
(1)

$$\frac{\partial}{\partial t} \mathbf{V}_h + \nabla_h \frac{P}{\gamma} + \frac{\partial}{\partial \xi} \left(\mathbf{G}^3 \frac{P}{\gamma} \right) = \mathbf{A} \mathbf{D} \mathbf{V}_h + \mathbf{F}_{Coriolis}$$
(2)

$$\frac{\partial}{\partial t}W + \gamma^{2}\frac{\partial}{\partial\xi}\left(\frac{P}{G^{1/2}\gamma^{2}}\right) + Rg = ADV_{z} + F_{Coriollis}$$
(3)
$$\frac{\partial}{\partial t}E + \nabla_{h}\cdot\left(h\frac{\mathbf{V}_{h}}{\gamma}\right) + \frac{\partial}{\partial\xi}\left[h\left(\frac{W}{G^{1/2}} + \mathbf{G}^{3}\cdot\frac{\mathbf{V}_{h}}{\gamma}\right)\right]$$

 γ

 $R = \gamma^2 G^{1/2} \rho$

 $E = \gamma^2 G^{1/2} \rho e_{in}$

$$-\frac{\mathbf{V}_{h}}{R} \cdot \left[\nabla_{h} \frac{P}{\gamma} + \frac{\partial}{\partial \xi} \left(\mathbf{G}^{3} \frac{P}{\gamma}\right)\right] - \frac{W}{R} \gamma^{2} \frac{\partial}{\partial \xi} \left(\frac{P}{G^{1/2} \gamma^{2}}\right) + Wg = Q_{heat}$$

Prognostic variables

- density •
- horizontal momentum $\mathbf{V}_h = \gamma^2 G^{1/2} \rho \mathbf{v}_h$ •
- vertical momentum • $W = \gamma^2 G^{1/2} \rho w$
- internal energy •

 ∂t

Metrics

$$G^{1/2} = \left(\frac{\partial z}{\partial \xi}\right)_{x,y}$$
$$\mathbf{G}^{3} = \left(\nabla_{h} \xi\right)_{z}$$
$$\xi = \frac{H(z - z_{s})}{H - z_{s}}$$

(4)

Temporal Scheme (in the case of RK2)

Assumption : the variable at t=A is known.

Obtain the slow mode tendency S(A).

HEVI solver

1. <u>1st step :</u>

Integration of the prog. var. by using S(A) from A to B.

- Obtain the tentative values at t=B.
- Obtain the slow mode tendency S(B) at t=B.

2. 2nd step :

Returning to A, Integration of the prg.var. from A to C by using S(B).

→ Obtain the variables at t=C

Small Step Integration

In small step integration, there are 3 steps:

- 1. Horizontal Explicit Step
 - Update of horizontal momentum
- 2. Vertical Implicit Step
 - Updates of vertical momentum and density.
- 3. Energy Correction Step
 - Update of energy

Horizontal Explicit Step

Horizontal momentum is updated explicitly by

$$\mathbf{V}_{h}^{t+(n+1)\Delta\tau} = \mathbf{V}_{h}^{t+n\Delta\tau} + \Delta\tau \left[\left(-\nabla_{h} \frac{P}{\gamma} - \frac{\partial}{\partial\xi} \left(\mathbf{G}^{3} \frac{P}{\gamma} \right) \right)^{t+n\Delta\tau} + \left(\frac{\partial \mathbf{V}_{h}}{\partial t} \right)^{[t, or t+\Delta t/2]}_{\text{slow mode}} \right]$$

Fast mode
Slow mode :
given

- HEVI

Small Step Integration (2)

Vertical Implicit Step

• The equations of R,W, and E can be written as:

$$\frac{R^{t+(n+1)\Delta\tau} - R^{t+n\Delta\tau}}{\Delta\tau} + \frac{\partial}{\partial\xi} \left(\frac{W^{t+(n+1)\Delta\tau}}{G^{1/2}}\right) = G_R$$
 (6)

$$\frac{W^{t+(n+1)\Delta\tau} - W^{t+n\Delta\tau}}{\Delta\tau} + \gamma^2 \frac{\partial}{\partial\xi} \left(\frac{P^{t+(n+1)\Delta\tau}}{G^{1/2}\gamma^2}\right) + R^{t+(n+1)\Delta\tau}g = G_z \quad (7)$$

$$\frac{P^{t+(n+1)\Delta\tau} - P^{t+n\Delta\tau}}{\Delta\tau} + \frac{\partial}{\partial\xi} \left[\left(\frac{W^{t+(n+1)\Delta\tau}}{G^{1/2}} \right) c_s^{2t+n\Delta\tau} \right] + \frac{R_d}{C_V} W^{t+(n+1)\Delta\tau} \widetilde{g} = \frac{R_d}{C_V} G_E \quad (8)$$

Coupling Eqs.(6), (7), and (8), we can obtain the 1D-Helmholtz equation for W :

$$\frac{W^{t+(n+1)\Delta\tau}}{\gamma^{2}} - \frac{\partial}{\partial\xi} \left[\frac{1}{G^{1/2}\gamma^{2}} \frac{\partial}{\partial\xi} \left(\Delta\tau^{2} c_{s}^{2t+n\Delta\tau} \frac{W^{t+(n+1)\Delta\tau}}{G^{1/2}} \right) \right] - \left[\frac{\partial}{\partial\xi} \left(\Delta\tau^{2} \frac{R_{d}}{C_{V}} \widetilde{g} \frac{W^{t+(n+1)\Delta\tau}}{G^{1/2}\gamma^{2}} \right) \right] + \Delta\tau^{2} \frac{g}{\gamma^{2}} \frac{\partial}{\partial\xi} \left(\frac{W^{t+(n+1)\Delta\tau}}{G^{1/2}} \right) = \text{R.H.S.(source term)}$$
(9)

- Eq.(9) \rightarrow W
- Eq.(6) \rightarrow R
- Eq.(8) → E

Small Step Integration (3)

Energy Correction Step

E

(Total eng.) = (Internal eng.) + (Kinetic eng.) + (Potential eng.)

• We consider the equation of total energy

$$\frac{\partial}{\partial t}E_{total} + \nabla_h \cdot \left[\left(h + k + \Phi\right) \frac{\mathbf{V}_h}{\gamma} \right] + \frac{\partial}{\partial \xi} \left[\left(h + k + \Phi\right) \left(\frac{W}{G^{1/2}} + \mathbf{G}^3 \cdot \frac{\mathbf{V}_h}{\gamma}\right) \right] = 0 \quad (10)$$

where $E_{total} = \rho \gamma^2 G^{1/2} (e_{in} + k + \Phi)$

Additionally, Eq.(10) is solved as

$$-\Delta \tau \left[\nabla_{h} \cdot \left[\left(h + k + \Phi \right) \frac{\mathbf{V}_{h}}{\gamma} \right] + \frac{\partial}{\partial \xi} \left[\left(h + k + \Phi \right) \left(\frac{W}{G^{1/2}} + \mathbf{G}^{3} \cdot \frac{\mathbf{V}_{h}}{\gamma} \right) \right] \right]^{t + (n+1)\Delta \tau}$$

- Written by a flux form.
- The kinetic energy and potential energy:
 → known by previous step.
- Recalculate the internal energy:

$$E^{t+(n+1)\Delta\tau} = E^{t+(n+1)\Delta\tau}_{total} - \rho^{t+(n+1)\Delta\tau} \gamma^2 G^{1/2} \left(k^{t+(n+1)\Delta\tau} + \Phi \right)$$

Large Step Integration

Large step tendecy has 2 main parts:

- 1. Coliolis term
 - Formulated straightforward.
- 2. Advection term
 - We should take some care to this term because of curvature of the earth
- Advection of momentum
 - Use of a catesian coordinate in which the origin is the center of the earth.
 - The advection term of V h and W is calculated as follows.
 - 1. Construct the 3-dimensional momentum V using V_h and W.
 - 2. Express this vector as 3 components as (V_1, V_2, V_3) in a fixed coordinate.

These components are scalars.

3. Obtain a vector which contains 3 divergences as its components.

→ $(\nabla \cdot v_1 \mathbf{V}, \nabla \cdot v_2 \mathbf{V}, \nabla \cdot v_3 \mathbf{V})$ where $v_i = V_i / (G^{1/2} \gamma^2 \rho)$ 4. Split again to a horizontal vector and a vertial components.

 \rightarrow ADV_{h}, ADV_{z}

Computational strategy and performance

Next Generation Climate Mode

Computational strategy(1)

(0) region division level 0

(2) region division level 2

(1) region division level 1

(3) region division level 3

Domain decomposition

- 1. By connecting two neighboring icosahedral triangles, 10 rectangles are constructed. (rlevel-0)
- 2. For each of rectangles, 4 sub-rectangles are generated by connecting the diagonal mid-points. (rlevel-1)
- 3. The process is repeated. (rlevel-n)

Computational strategy(2)

Load balancing

<u>Example (rlevel-1)</u>

- **#** of region : 40
- # of process : 10
- Situation:
 - Polar region:
 Less computation
 - Equatorial region: much computation

Each process

- manage same color regions
- Cover from the polar region and equatorial region.

Avoid the load imbalance

Computational strategy(3)

Vectorization

- Structure in one region
 - Icosahedral grid
 - → Unstructured grid?
 - Treatment as structured grid
 - → Fortran 2D array
 - → vectorized efficiently!

• <u>2D array \rightarrow 1D array</u>

Higher vector operation length

Computational Performance (1)

Computational performance Depend on...

Computer architecture, degree of code tuning.....

Performance on the old Earth Simulator

Earth Simulator

- Massively parallel super-computer based on NEC SX-6 architecture.
 - 640 computational nodes.
 - 8 vector-processors in each of nodes.
 - Peak performance of 1CPU : 8GFLOPS
 - Total peak performance : 8X8X640 = 40TFLOPS
 - Crossbar network

Target simulations for the measurement

• 1 day simulation of Held & Suarez dynamical core experiment

Scalability of our model (NICAM) --- strong scaling

Configuration

Horizontal resolution : glevel-8 30km resolution

Vertical layers : 100

Fixed

- **Computer nodes :** increases from 10 to 80.

1

- Red
- ideal speed-up line
- actual speed-up line

Computational Performance (3)

Performance against the horizontal resolution --- weak scaling

The elapse time should increase by a factor of 2.

g level (grid intv.)	Number of PNs (peak performance)	Elapse Time [sec]	Average Time [msec]	GFLOPS (ratio to peak[%])
6 (120km)	5 (320GFLOPS)	48.6	169	140 (43.8)
7 (60km)	20 (1280GFLOPS)	97.4	169	558 (43.6)
8 (30km)	80 (5120GFLOPS)	195	169	2229 (43.5)
9 (15km)	320 (20480GFLOPS)	390	169	8916

Configuration

As the grid level increases,

of gridpoints : X 4
of CPUs : X 4
Time intv. : 1/2

<u>Results</u>

The elapse time increases by a factor of 2.

Problems & subjects

Next Generation Climate Model

Numerical problem

<u>3.5km mesh run : sometimes, crash!</u>

at the steep mountain area (e.g. Tibetan plateau)

- Possible cause
 - The CFL condition in the vertical direction?
 - » Reduction of time step or appication of vertical implicit method?
 - The large Horizontal-PGF error in the terrain-following coordinate.
 - » If the horizontal resolution increases more and more,
- Reconsideration of vertical descritization from the terrain-following coordinate to height basis coordinate.
 - Vertical adaptive mesh for the PBL scheme.

Current problems in NICAM (2)

Dirmeyer et al.(2010,JCLI submitted)

Climatology bias

found at the Athena project

- IFS : hydrostatic with c.p. – TL2047
- NICAM: nohydro witout c.p.
 - 7km mesh

NICAM Bias:

- Excessive precipitation
 @ south Indian ocean
 @ SPCZ
- Little precipitation
 @ storm track area in NH
 @ western pacific ocean
- Almost same situation as the 14km run.

→ independent of resolution.

→ basically, physical scheme problem!

Next Generation Climate Model

Future subjects

Beyond a simple global cloud-system resolving

- Cloud resolving approach has advantages over the convetional approach.
 - Explicit representation of cold pool dynamics
 - Well capture the organization of cloud dynamics
 - meso-scale cloud system, CC, SCC, MJO and so on.
- However,..... climate simulation?
 - Physics is not still sufficient!
- Radiation-microphysics coupling with aerosol process is a key!
 - CURENT :
 - Microphysics : one or two moment bulk method
 - Radiation: prescribed or assumed diameter of cloud particle
 - FUTURE :
 - Microphysics : spectral method as regard to the size distribution
 - Aerosol : spectral method
 - Radiation: estimate the optical depth of cloud and aerosol by tight coupling with microphysics and aerosol models.
 - → Locality is very important!

Ocean / Land high latitude/ mid latitude/ tropics

Exa-FLOPS is coming soon!

- Inner node:
 - Many-core /Many-socket → Memory bandwidth problem!!
 Bandwidth per core is very narrow (less that 0.1?).
 - Disadvantage for gridpoint method
 - » Load/store of memory occures frequently.
 - » Short computation
 - But, welcome for complicated physics?
 - » Calculation is dominated over the memory load/store.
 - Hybrid architecture with CPU and GPU?
 - Complicated programming?

Outer node:

- Commnication is dominated
 - Network topology, speed itself
- Parallel IO
- Coding problem:
 - What is the standard language?
 - OpenCL, new Fortran?

Summary

NICAM dynamical core

- Icosahedral A-grid
 - with grid modification by spring dynamics etc.
- Coservative nonhydrostatic scheme
 - Mass & total mass
 - CWC
- Time scheme
 - Split explicit scheme with HEVI for the small step solver.
- Problem
 - Numerically,
 - Steep mountain problem!
 - Need to change from terrain-following approach to height-base approach for vertical discretization.
 - Physically,
 - Precipitation bias still exists.
 - This can be solved by many tuning runs on K-computer(10 PFLOPS) within 1 or 2 years

Up to date, the parallel efficiency of NICAM is quite good.

- There is a lot of computer-side problems towards the nextgeneration supercomputer (ExaFLOPS)
 - Need to construct the model, considering the future evironment.

