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Non-hydrostatic modeling with IFS:
current status 

ECMWF non-hydrostatic workshop, Reading 2010

Nils Wedi, Pierre Benard, Karim Yessad, Agathe Untch,
Sylvie Malardel, Mats Hamrud, George Mozdzynski, Mike Fisher,
and Piotr Smolarkiewicz

Many thanks to all ECMWF colleagues …
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Outline

Overview of the current status of non-hydrostatic 
modelling at ECMWF

Identify main areas of concern and their suggested resolve

The spectral transform method

Compressible vs. unified hydrostatic-anelastic
equations 

Conclusions
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Introduction – A history
Resolution increases of the deterministic 10-day medium-range 
Integrated Forecast System (IFS) over ~25 years at ECMWF:

1987: T 106 (~125km)

1991: T 213 (~63km)

1998: TL319 (~63km)

2000: TL511 (~39km)

2006: TL799 (~25km)

2010: TL1279 (~16km)

2015?: TL2047 (~10km)

2020-???: (~1-10km) Non-hydrostatic, cloud-permitting, substan-
tially different cloud-microphysics and turbulence parametrization, 
substantially different dynamics-physics interaction ?
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The Athena Project (6 months)
An example of the computational efficiency of the 

hydrostatic IFS
IFS (cycle 36r1) atmosphere-only runs with prescribed SST data from 
observations until 2007 (2070- A1B scenario SST forcing comes from CCSM 
simulation)

Set of 13-months long integrations (1960-2007) and AMIP long runs (1960-2007 
and 2070-2117)

TL159L91 ( ~125 km, Δt = 3600s)

TL511L91   ( ~39 km, Δt = 900s)

TL1279L91 ( ~16 km, Δt = 600s)

TL2047L91 ( ~10 km, Δt = 450s)

Factor 10-15 larger time-step compared to existing state-of-the-art non-
hydrostatic models at equivalent resolutions, additional savings from the 
reduced grid (~30%) and the direct solver in the semi-implicit scheme.

1x 19 years

3 x 47 years

1 x 47 years

3 x 47 years
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Ultra-high resolution global IFS simulations

TL0799 (~ 25km) >>    843,490 points per field/level

TL1279 (~ 16km) >> 2,140,702 points per field/level

TL2047 (~ 10km) >> 5,447,118 points per field/level

TL3999 (~ 5km) >> 20,696,844 points per field/level (world 
record for spectral model ?!)
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The Gaussian grid

Full grid Reduced grid
Reduction in the number of Fourier points at high latitudes is possible because the 
associated Legendre functions are very small near the poles for large m.

About 30% reduction in number of points
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Preparing for the future: The nonhydrostatic IFS

Developed by Météo-France and its ALADIN partners 
Bubnová et al., (1995); ALADIN (1997); Bénard et al. 
(2004,2005,2010)

Made available in IFS/Arpège by Météo-France (Yessad, 
2008)

Testing of NH-IFS described in Techmemo TM594 (Wedi et 
al. 2009)
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Two new prognostic variables in the 
nonhydrostatic formulation

‘Nonhydrostatic
pressure departure’

‘vertical divergence’

Three-dimensional divergence writes

With residual residual

Define also:
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NH-IFS prognostic equations

‘Physics’

“anelastic physics coupling”
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The planet …
a < aEarth

(Smolarkiewicz et. al. 1998;
Wedi and Smolarkiewicz, 2009)
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Scale analysis for NH 
local-scale problems
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Test-bed for NH effects

3D global simulations, without the prohibitive cost, when 
resolving non-hydrostatic effects.

Study the influence of the model formulation and/or various 
numerical choices on selected wave-types in three 
dimensions.

Use of the established vertical discretization and/or 
physical parameterization packages.

Use of the existing optimized 3D code framework. 
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NH-IFS

EULAG

Quasi two-dimensional orographic flow 
with linear vertical shear 

H-IFS

The figures illustrate the correct 
horizontal (NH) and the (incorrect) 
vertical (H) propagation of gravity 
waves in this case (Keller, 1994). 
Shown is vertical velocity.

(Wedi and Smolarkiewicz, 2009)
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The critical level 
effect on linear 
and non-linear flow 
past a three-
dimensional hill
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Skewness and (excess) Kurtosis

Predicted from linear stochastic models
forced with non-Gaussian noise (Sardeshmukh and Surda, 2009)

EULAG

IFS
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(250hPa vorticity)
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Higher resolution influence (250hPa vorticity)

Extreme events
associated with 
vorticity filaments
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Cyclonic vorticity (extreme events)

For example vorticity
filaments are associated 
with high skewness and
high (excess) kurtosis !
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Orography – T1279

Alps
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Orography T3999
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Cloud cover 24h forecast T3999 (~5km)

Era-Interim shows a wind shear with height in the 
troposphere over the region!
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0 1000 2000 3000 4000

GP_DYN

SP_DYN

TRANS

Physics

other H - IFS NH - IFS

Computational Cost at TL3999

Total cost increase for 24h forecast:  H 50min vs. NH 150min 
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GP_DYN
SP_DYN
TRANS
Physics
other

H TL3999NH TL3999

Computational Cost at TL3999
hydrostatic vs. non-hydrostatic IFS
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The spectral transform method
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Schematic description of the spectral transform 
method in the ECMWF IFS model

Grid-point space
-semi-Lagrangian advection
-physical parametrizations
-products of terms

Fourier space

Spectral space
-horizontal gradients
-semi-implicit calculations 
-horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

No grid-staggering of 
prognostic variables
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Transpositions 
within the 
spectral 

transforms

The time spent in message passing 
associated with the “transpositions” 
at T1279 is roughly equal to the 
computational time.
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Horizontal discretisation of variable X (e.g. temperature)
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(3N+1 if quadratic grid)
“fast” algorithm available …

Legendre transform
by Gaussian quadrature
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((3N+1)/2 if quadratic grid)
“fast” algorithm desirable …
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Computation of the associated Legendre 
polynomials

Increase of error due to recurrence formulae (Belousov, 
1962)

Recent changes to transform package went into cycle 35r3 
that allow the computation of Legendre functions and 
Gaussian latitudes in double precision following 
(Schwarztrauber, 2002) and increased accuracy 10-13 instead 
of 10-12.

Note: the increased accuracy leads in the “Courtier and 
Naughton (1994) procedure for the reduced Gaussian grid” 
to slightly more points near the poles for all resolutions.

Note: At resolutions >= T3999 the associated Legendre 
polynomials for large m get very small … 
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Cost of the spectral transform method

FFT can be computed as C*N*log(N) where C is a small 
positive number and N is the cut-off wave number in the 
triangular truncation.

Ordinary Legendre transform is O(N2) but can be combined 
with the fields/levels such that the arising matrix-matrix 
multiplies make use of the highly optimized BLAS routine 
DGEMM.

But overall cost is O(N3) for both memory and CPU time 
requirements.

Desire to use a fast Legendre transform where the 
cost is proportional to C*N*log(N) with C << N
and thus overall cost N2*log(N) 
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Fast Legendre transform
The algorithm proposed in (Tygert, 2008) suitably fits into the 
IFS transform library by simply replacing the single DGEMM 
call with 2 new steps plus more expensive pre-computations.

(1) Instead of the recursive Cuppen divide-and-conquer 
algorithm (Tygert, 2008) we use the so called butterfly 
algorithm (Tygert, 2010) based on a matrix compression 
technique via rank reduction with a specified accuracy to 
accelerate the arising matrix-vector multiplies (sub-problems 
still use dgemm).

(2) The arising interpolation from one set of roots of the 
associated Legendre polynomials to another can be 
accelerated by using a FMM (fast multipole method).
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Average elapsed time 
for a single ordinary model time-step with typical configurations on 

the IBM power6
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Towards a unified hydrostatic-anelastic 
IFS system

Scientifically, the benefit of having a prognostic equation 
for non-hydrostatic pressure departure is unclear.

The coupling to the physics is ambiguous.

For stability reasons, the NH system requires at least one 
iteration, which essentially doubles the number of spectral 
transforms.

Given the cost of the spectral transforms, any reduction in 
the number of prognostic variables will save costs.
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Summary and outlook
“Pushing the boundaries” with first TL3999 simulations.

The non-hydrostatic IFS works robust at hydrostatic scales 
with equivalently large time-steps compared to the 
hydrostatic IFS. 

However, computational cost (almost 3 x at TL3999)  is a 
serious issue ! Even with the hydrostatic IFS at TL3999 the 
conventional spectral computations are about 50% of the 
total computing time.

Fast Legendre Transform (Tygert, 2008,2010) shows some 
promise but to be evaluated further.

The unified IFS hydrostatic-anelastic equations (Arakawa 
and Konor, 2009) may be a way forward towards highly 
efficient and stable integrations for the hydrostatic and the 
non-hydrostatic regime (see also the next talk by Pierre).
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Additional slides
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The Athena project
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T1279 Precipitation
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T3999 precipitation
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Orography – T1279
Max global altitude = 6503m

Alps
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Orography - T3999

Alps

Max global altitude = 7185m
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Computational Cost at TL2047

0 1000 2000 3000 4000

GP_DYN

SP_DYN

TRANS

Physics

other H - IFS NH - IFS

Total cost increase NH – H 106 %
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GP_DYN
SP_DYN
TRANS
Physics
other

H TL3999H TL2047

Computational Cost at TL2047 and TL3999
(with the hydrostatic IFS)
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Numerical solution

Advection via a two-time-level semi-Lagrangian numerical 
technique as in the hydrostatic system.

Semi-implicit procedure with two reference states with respect 
to gravity and acoustic waves, respectively.

The resulting Helmholtz equation is more complicated than in 
the hydrostatic case but can still be solved (subject to some 
constraints on the vertical discretization) with a direct solver as 
before. (Benard et al 2004,2005,2010)
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Vertical coordinate

with
coordinate transformation coefficient

hybrid vertical coordinate
Simmons and Burridge (1981)

Prognostic surface pressure tendency:

Denotes hydrostatic pressure in the context of a shallow, vertically 
unbounded planetary atmosphere.
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Diagnostic relations

With 
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