All-sky observations: errors, biases, representativeness and gaussianity

Alan Geer, Peter Bauer, Philippe Lopez Thanks to: Bill Bell, Niels Bormann, Anne Foullioux, Jan Haseler, Tony McNally

Assimilation of cloud and precipitation affected microwave radiances at ECMWF

- Microwave imagers, e.g. SSM/I, SSMIS, TMI, AMSR-E
 - Radiances are sensitive to humidity, cloud, precipitation, and the ocean surface
- 1D+4D-Var of cloud and precipitation-affected microwave imagers from June 2005
- All-sky assimilation of radiances directly into 4D-Var from March 2009
 - All-sky = clear, cloudy and precipitating conditions together (no cloudclearing)
 - Cloud and precipitation are part of the 4D-Var minimisation
 - Increased weight of observations for summer 2010 (revised observation errors and quality control)

 All-sky 4D-Var microwave sounder (AMSU-A) radiances in testing

ECMWF-JCSDA workshop, June 2010

Introduction

- Adding cloud / precip observations to an operational system needs:
 - Neutral or improved medium-range forecast scores
 - Improved fits to other observations in analysis and first guess
 - (Fast computational speed)
- To achieve this:
 - Appropriate background and observation errors
 - Gaussian error statistics
 - Linearity of models (Philippe Lopez's talk)
 - Quality control
 - Representativeness of observations and model
 - Bias correction

Observation errors and cloud sampling

ECMWF-JCSDA workshop, June 2010

Sampling

All-sky SSM/I first guess departures

Symmetry in all-sky assimilation

- Any property in a data assimilation system that varies as a function of cloud or rain may lead to "asymmetric" sampling errors
- Bias correction as a function of observed cloud
 - Never enough model cloud when cloud is observed
- Observation error as a function of observed cloud amount
 - Will "lock in" the sampling bias
- 'Symmetric' cloud / rain predictors:
 - Mean of observed and first guess cloud
 - Max of observed and first guess cloud
 - Constant error more appropriate for AMSU-A and rain radar

Error standard deviations – in an ideal world

All-sky SSM/I first guess departures

Symmetric model for all-sky observation error

Symmetric model for all-sky observation error

Useful properties of "symmetric" errors

ECMWF-JCSDA workshop, June 2010

All-sky departures: not gaussian?

Slide 13

ECMWF

All-sky departures: actually quite gaussian

All-sky 4D-Var departures: QC

Slide 15

ECMWF-JCSDA workshop, June 2010

Representativity

ECMWF-JCSDA workshop, June 2010

19 GHz

 \bigcirc

Raw AMSR-E data: 10km by 9km sampling

ECMWF

Model representativity: saved by 'effective resolution' of cloud

Slide 19

ECMWF-JCSDA workshop, June 2010

Error inflation with colocation distance model vs. observation

Representativity - summary

- High-res PDFs (e.g. of precipitation or brightness temperature) are very different to lo-res PDFs
- Subsampling (or use of single observations) is wrong
- High-res observations \rightarrow lo-res model
- Must spatially average ("superob") observations to appropriate model scale.
- High-res model \rightarrow lo-res observation
- Must spatially average ("superob") model to appropriate observation scale
- But in practice, model cloud and FG error scales are much coarser than nominal resolution
 - So it's ~OK to subsample.
 - Model vs. observation colocation distance not too important (at least over 100-200km)

- Sub-grid cloud/precip variability
- Well-known issue for moist physics and observation operators

Biases between model and cloud / precipitation affected observations

ECMWF-JCSDA workshop, June 2010

SSM/I **Channel 19v**

00Z 9-Aug-2009

PDF of brightness temperature: Channel 19v

Bias correction as a function of cloud

Difficulties with adaptive bias correction

Slide 40

CECMWF

Difficulties with adaptive bias correction

- Signal to noise:
 - biases of ~2K against standard deviations of 15K
- Biases can be determined by a few observations at the extreme cloudy end
 - Vulnerable to interactions with quality control
- "Mean cloud" predictor is not well targeted
 - But no success with more precise approaches either e.g., tropics vs. midlatitude separation

Screening criteria for bad biases

ECMWF-JCSDA workshop, June 2010

Slide 42

ECECMWF

Biases fixed: cloud overlap in the RTTOV-SCATT radiative transfer model

Original overlap З 2 -135 2R SSM/I Channel 45 19v mean departure [K] **Revised** overlap Mean FG (-2 135 -45 90 -13520IC -3 20 independent column -4 reference -135

2C

ECMWF-JCSDA workshop, June 2010

Slide 43

ECMWF

Error tuning experiments

ECMWF-JCSDA workshop, June 2010

Symmetric model for all-sky observation error

Symmetric model for all-sky observation error

All-sky observation error tuning

All-sky observation error in practice

All-sky observation error after tuning experiments

- Channel 19v in cloudy areas:
 - FG departure standard deviation: 15 K
 - Observation error: 14.96 K
- In practice, ALL cloudy error is assigned as observation error. Why?
 - ECMWF system does not correctly represent background error covariances in cloudy areas?
 - Error correlations not considered see Niels Bormann's talk.
 - Forecast model bias

Status

- Observation errors Stopgap solution
 - Need to be symmetric (i.e. not causing sampling biases)
 - Symmetric approach for all-sky assimilation
 - Observation error being used to account for forecast model error!
- Quality control OK
 - Threshold checks using symmetric model for FG departures
 - VarQC
- Gaussianity and linearity OK for now
- Representativity Saved by very broad scales of model cloud
- Model biases The real problem
 - E.g. fronts, cold sectors
 - Correlated errors

Recommendations

Background errors

- Need to represent broad areas of uncertainty around fronts and clouds
- Ensemble methods should help
- Bias correction
 - Predictors must be symmetric
 - Refine current methods (e.g. better VarBC predictors)
 - New methods to represent cloud and precipitation biases?
- Model biases
 - Screen out observations that disagree with the model
 - Improve the models
 - Weak constraint 4D-Var
 - Parameter estimation

