

Preliminary Results of GRAPES' Helmholtz solver using GCR and PETSc tools

Xiangjun Wu⁽¹⁾, Lilun Zhang⁽²⁾, Junqiang Song⁽²⁾ and Dehui Chen⁽¹⁾

- (1) Center for Numerical Weather Prediction, CMA
- (2) School of Computer Science, National University of Defense Technology

wuxj@cma.gov.cn

Outline:

- Some features of GRAPES-global model
- Using GCR-CL scheme for solving Helmholtz equation
- Using PETSc tools for solving Helmholtz equation
- Some tests
- Summary and future work

Main features of the GRAPES Global model

- Latitude-longitude grid point, spherical coordinate
- Non-hydrostatic/Hydrostatic optionally
- Height terrain-following coordinate
- Charney-Phillips variable staggering in vertical
- 2 time-level SISL scheme
- > 3D preconditioned GCR solver for Helmholtz equation
- > Arakawa-C grid horizontally: v at poles
- Polar filtering

Arakawa-C grid for horizontal arrangement of variables for **GRAPES** model:

Charney-Phillips vertical arrangement of variables:

	Chamey-Phillips	Vertical level	Lorenz
Toplevel	$z, \hat{z}, \theta, w, \hat{w}$	k = N	z, \hat{z}, w, \hat{w}
	z,ź, p, P,u,v	k = N - 0.5	z, 2̂, θ, ρ, Ρ, μ, ν
	$z, \hat{z}, \theta, w, \hat{w}$	k = N - 1.0	z, \hat{z}, w, \hat{w}
	z, ź, ρ, Ρ, u, v	k = N - 1.5	z, 2̂, θ, ρ, Ρ, μ, ν
	•	•	•
	•	•	•
	•	•	•
	$z, \hat{z}, \theta, w, \hat{w}$	k = 2.0	z, \hat{z}, w, \hat{w}
	z,2̂,ρ,Ρ,u,ν	<i>k</i> = 1.5	z, 2̂, θ, ρ, Ρ, μ, ν
	$z, \hat{z}, \theta, w, \hat{w}$	k = 1.0	z, \hat{z}, w, \hat{w}
	z, 2, , p, P, u, v	k = 0.5	z, 2̂, θ, ρ, Ρ, μ, ν
Earth's surface	$z, \hat{z}, \theta, w, \hat{w}$	k = 0	z, \hat{z}, w, \hat{w}

Prediction equation for GRAPES model:

$$u^{n+1} = \left[\xi_{u_1}^{\varepsilon} \frac{1}{a\cos\varphi} \frac{\partial}{\partial\lambda} + \xi_{u_2}^{\varepsilon} \frac{1}{a} \frac{\partial}{\partial\varphi} + \xi_{u_3}^{\varepsilon} \frac{\partial}{\partial\hat{\varepsilon}}\right] (\Pi^{\dagger})^{n+1} + \xi_{u_0}^{\varepsilon}$$
(1)

$$v^{n+1} = \left[\xi_{\nu_1} \frac{1}{a \cos\varphi} \frac{\partial}{\partial \lambda} + \xi_{\nu_2} \frac{1}{a} \frac{\partial}{\partial \varphi} + \xi_{\nu_3} \frac{\partial}{\partial \hat{z}}\right] (\Pi)^{n+1} + \xi_{\nu_0}$$
(2)

$$\hat{w}^{p+1} = \left[\xi_{w_1} \frac{1}{a \cos\varphi} \frac{\partial}{\partial \lambda} + \xi_{w_2} \frac{1}{a} \frac{\partial}{\partial \varphi} + \xi_{w_3} \frac{\partial}{\partial \hat{z}}\right] (\Pi^{\prime})^{p+1} + \xi_{w_0}$$
(3)

$$(\dot{\theta'})^{n+1} = \xi_{\theta_3} \frac{\partial}{\partial \hat{z}} (\Pi')^{n+1} + \xi_{\theta_0}$$
(4)

$$(\Pi^{i})^{n+1} = \xi_{\Pi} u^{n+1} + \xi_{\Pi_{b}} v^{n+1} + \xi_{\Pi_{b}} \hat{w}^{n+1} + \xi_{\Pi_{b}} (D_{3})_{\hat{x}} + A_{\Pi}$$
(5)

Equation (5) is Helmholtz equation . Solution of Helmholtz equation is key for GRAPES mode computing. Due to variables u, v, w, θ represented by function of π , It's possible to solve other variables only after its solution.

Let the Helmholtz equation is: $A\vec{x} = \vec{b}_0$

The approximate solution is:

The residual is:

The preconditioner is:

So the Helmholtz equation with precondition is:

 $\vec{r} = \vec{b}_0 - A\vec{x}_0$

 \vec{x}_0

M

 $(M^{-1}A)\vec{x} = M^{-1}\vec{b}$

Arrangement of 19 coefficients for Helmholtz equation of GRAPES:

 ✓ The coefficient matrix of helmholtz equation is a larger sparse matrix

✓ The values of
 B₁,B₁₀,B₁₅,B₂,B₃ are
 more larger than
 others

arrangement of 19 coefficients for Helmholts equation of Grapes

Precondition:

 a good preconditioner requires fewer iterations to converge for a given sparse linear system.

 Roughly speaking, a preconditioner is any form of implicit or explicit modification of the original coefficient matrix.

•For GRAPES model, choosing the main elements to build the preconditioner maybe a good ideal

For 19 coefficients, choose B1,B10,B15,B2,B3 to build the precondition matrix.

		-																													
*	*	*																													
	*	*	*																												
		*	*	*																											
			*	*																											
-			~																												
					*	,	*																								
					*	,	*	*																							
						,	*	*	*																						
								*	*	*																					
									*	η¢.																					
											*	*																			
											*	*	*																		
												*	*	,	k																
													*	,	k	*															
														;	k	*															
																	*	*													
																	*	*	*												
																		~	-												
																			*	1	k	*									
																				*	k	*									
																							*	*							
																							*	*	*						
																								*	*	*					
																									*	*	*				
																										*	*				
																												*	*		
																												*	*	*	
																													*	*	
																														*	

CNPR

The escaped time ratio for main subroutines of 0.5° GRAPES Global model(1day forecast on 64)

The Solver for Helmholtz equation of GRAPES model:

 Using GCR(Generalised Conjugate Residual) with preconditioner algorithm (called it as gcr-cl now used in GRAPES);

2. Using PETSc ksp solver + hypre preconditioner.

What's PETSc? (http://www.mcs.anl.gov/petsc/petsc-as/) the Portable, Extensible Toolkit for Scientific Computation PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. It consists of a variety of libraries which manipulates a particular family of objects(such as vectors, matrix, distributed arrays, Krylov subspace method, preconditioners, et).

Organization of the PETSc Libraries

Parallel Numerical Components of PETSC

Nonlinear Solvers				Time Ste	ppers	
Newton-based Methods		other	Euler	Backward Euler	Pseudo-Time	other
Line Search	Trust Region				Stepping	

Krylov Subspace Method									
GMRES	CG	CGS	Bi-CG-Stab	TFQMR	Richardson	Chebyshev	other		

	Precondition										
Additive Schwarz	Block Jacobi	Jacobi	ILU	ICC	LU (sequential only)	other					

	Matrices									
Compressed Sparse Row (AIJ)	Block Compressed Sparse Row (BAIJ)	Block Diagonal (BDiag)	Dense	other						

Vectors		Index Sets								
vectors	Indices	Block Indices	Stride	other						

Numerical Libraries of PETSc

What's Hypre? (http://acts.nersc.gov/hypre/) high performance preconditions Hypre is a library for solving large, sparse linear systems of equations on massively parallel computers. Hypre contains several families of preconditioner algorithms focused on the scalable solution of very large sparse linear systems. These algorithms include structured multigrid and element-based algebraic multigrid.

A example subroutine using PETSc functions:

```
. . .
lf(nstep==1)
   Call PetscInitialize()
   Call MatCreatMPIAIJ()
   Call set_A-petsc()
   . . .
   Call KspCreate()
   . . .
Endif
Call set_b_petsc()
. . .
Call kspsolver()
Call PetscFinalize()
stop
```


Test for Rossby-Haurwitz wave

- 1.0° resolution for global model (grid size:360x180x36)
 The residual l₂-norm <10⁻⁹ for convergence
 Main variables are double precision
 Run on IBM-cluster
 Use 64 MPI tasks
 >80days forecast
 - For PETSc scheme, use GMRES+ BoomerAMG(hypre)

0day_500hpa_H

-50

-100

-150

30day_gcr_500hpa_H

30day-0day_gcr_500hpa_H

-50

-100

-150

30day-0day_gmres_500hpa_H

5900

5800

5700

5600

5500

5400

5300

5200

5100

250 200

150

100

50

-50

-100

-150 -200

50day_gcr_500hpa_H

50day-0day_gcr_500hpa_H

50day-0day_gmres_500hpa_H

150

100

50

-50

-100 -150

-200

-50

-100

-150

80day_gcr_500hpa_H

80day-0day_gcr_500hpa_H

80day-0day_gmres_500hpa_H

Table1 : Escaped Time for 80day forecast of Rossby-Haurwitz wave with 19 coefficients on IBM-cluster1600

scheme	gcr-	cl	Petsc			
	Time helm/total	Number of	Time helm/total	Number of		
		iterations		iterations		
Step 1	5.11/7.71	275	9.43/17.24	12		
Step 520	3.70/4.66	196	2.36/3.32	12		
Step 5319	2.27/3.23	147	2.38/3.34	12		
Wall clock	5h37m1	1.40s	5h21m30s			

Test for real data

- 0.5° resolution for global model (grid size:720x361x36)
- > Main variables are double precision
- ➢On IBM-cluster 1600
- ≻Use 64 processors
- Initial data: 31 may 2007
- ≻60 min for radiation
- 1days forecast , 144 steps, DT=600s
- For petsc scheme, use GMRES+ BoomerAMG(hypre)
- > Test1 for convergence using residual l_2 -norm <10⁻⁷
- Test2 for convergence using residual l₂-norm <10⁻¹²

-3

Diff_1day_500hpa_H(org-petsc)

1day_500hpa_H-petsc

test1

270

265

260

255

250

245

240

-1.5

Oday_500hpa_T

Diff_1day_500hpa_T(org-petsc)

35

30

-15 -20

-3

Diff_1day_500hpa_U(org-petsc)

25 20

15

10

-15

-20 -25 -30

-0.5

-1.5 -2 -2.5

Oday_500hpa_V

Diff_1day_500hpa_V(org-petsc)

1day_500hpa_V-petsc

Diff_1day_500hpa_H(org-petsc)

Diff_1day_500hpa_U(org-petsc)

Diff_1day_500hpa_T(org-petsc)

Table2(test1) : Escaped Time for test of real data onIBM-cluster 1600(residual l²-norm <10-7)</td>

convergence	E07-d	-org	E07-petsc			
	Time helm/total	Number of	Time helm/total	Number of		
		iterations		iterations		
Step 1	19.01/80.56	184	62.56/122.9	26		
Step 42	15.32/46.58	147	26.64/57.73	29		
Step 137	13.45/23.37	147	26.63/36.58	28		
Wall clock	1h13m5	3.93s	1h44m12.95s			

Table3(test2) : Escaped Time for test of real data on IBMcluster1600 (residual l²-norm <10⁻¹²)

convergence	E12-d	-org	E12-petsc			
	Time helm/total	Number of	Time helm/total	Number of		
		iterations		iterations		
Step 1	45.61/107.76	623	84.80/145.99	50		
Step 42	38.16/69.33	519	47.99/79.13	53		
Step 137	37.29/47.22	511	47.09/57.04	52		
Wall clock	2h12m2	2.18s	2h33m34.26s			

Fig: One step time of helmholtz solver for different number of processor (residual *l*²-norm <10⁻¹²)

Fig: wall clock of 1day forecast and the efficiency for different number of processor (residual *l*²-norm <10⁻¹²)

Table4: Escaped Time for real data test on Intel basedmachine (residual |2-norm <10⁻¹²)

Number processor	Original scheme	PETSc tools
	Time helm for one	Time helm for one
	step	step
1		
4	171.885	
8	155.88	53.18
16	83.04	25.16
32	42.64	13.93
64	25.47	8.12
128	21.14	3.97
256	11.24	2.16

summary:

Good Solution for Helmholtz equation using PETSc tools
 Same convergence precision, fewer iterations using PETSC for Solution of Helmholtz equation

The solution for Helmholtz equation using PETSc has more well scalability

The running time of two scheme is comparable, and at some platform using PETSc tools were more better.

Future work:

- > Testing more cases and give the profile.
- Testing different combination of hypre preconditioner plus
 GRMES
- Testing with large number processors (more than 256 etc.) under high-resolution model.
- Optimize PETSc solution for Helmholtz equation.
- Comparable research on parallel algorithm library of preconditioner except hypre, such as Trillions and SuperLUdist, etc.

