# Architecture Comparison Exercise (ACE)

# **Loïs Steenman-Clark**

Head of Computational Modelling Services (CMS) National Centre for Atmospheric Science (NCAS) Department of Meteorology University of Reading

14th HPC in Meteorology, ECMWF, 2010

# ACE

• is an architectural comparison exercise for the broad UK modelling community using the national academic HPC platforms

• is a study of a few application on a few diverse HPC platforms

OUTLINE

- put ACE in context
- outline some key findings from ACE
- look at the limitations of ACE for meteorological code

# 1. Where does ACE fit in the application benchmarking scenario?





# **3. Applications and HPC systems used in ACE**

| Application | Description                            |
|-------------|----------------------------------------|
| SENGA       | CFD code                               |
| CASTEP      | Ab-initio Car-Parrinello code          |
| GADGET      | Cosmological simulation                |
| AMBER       | Bio-systems molecular dynamics package |
| HELIUM      | Atomic calculations                    |

| HPC System    | Description                                   |
|---------------|-----------------------------------------------|
| НРСх          | IBM Power5 (closed January 2010)              |
| HECToR/Jaguar | Cray XT4/XT5                                  |
| Darwin/Merlin | Large University Clusters (Cambridge/Cardiff) |
| Jugene        | IBM BlueGeneP                                 |
| JuRoPa        | Nehalem quad core Cluster                     |

• Methodology for modelling the whole process of running case studies with applications



#### **SUMMARY**

• large variation of performance of collectives on the different HPC architectures explored

• TAU and CrayPat were found to be very useful tools for performance analysis and both gave similar results

• the software environment can have a large effect on the performance of an application. In ACE the MPI environment was seen to have a large effect on some applications.

• the problem sizes of the cases were not always optimal and needed more consideration

• correlations can be observed linking application performance and the HPC attribute performance a determined by synthetic benchmarks

- Kiviat diagrams enabled a comparison of different HPC systems at a glance
  - a) HPCC benchmark results for different HPC platforms



• Kiviat diagrams enabled a comparison of different applications at a glance

b) Application performance for different problem sizes on different HPC platforms



• Understanding of performance variability issues across a number of applications and HPC platforms, which provides evidence for investment in both software development and HPC provision

| Dependency          | Characterisation                                                                   | Performance Variability           |
|---------------------|------------------------------------------------------------------------------------|-----------------------------------|
| HPC<br>architecture | <ul> <li>Scalability<br/>Memory<br/>Core speed<br/>Interconnect</li> </ul>         | <b>ACE</b> up to 200%             |
| System<br>software  | <ul> <li>Compiler</li> <li>MPI implementation</li> <li>maths libraries</li> </ul>  | ACE 10-20%<br>ACE ~20%<br>ACE ~9% |
| Usability           | <ul><li>MTBF</li><li>jitter</li><li>slowdown</li></ul>                             | ACE ~10% on some HPC platforms    |
| I/O                 | <ul> <li>Application</li> <li>I/O hardware architecture</li> <li>jitter</li> </ul> |                                   |

5. What performance issues were NOT addressed by ACE?

Two critical issues for data intensive high resolution applications such as weather and climate models are

- Input/Output
- Throughput / Use-ability

Why were these not explored?

- Applications and I/O hardware were considered too hard to characterise within this current project (non-quiesent systems, limited disk space, challenge of changing application I/O strategies). However the methodology of Shan, Antypas and Shalf (NERSC) could be adapted to enable the Unified Model (UM) as well as SENGA with I/O to be included in a future ACE type study.

- Throughput or use-ability are again hard to characterise and they are a function of HPC service delivery and administration

### 5. What performance issues were NOT addressed by ACE?

| Dependency          | Characterisation                                                                   | Performance Variability                                                                             |
|---------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| HPC<br>architecture | <ul> <li>Scalability<br/>Memory<br/>Core speed<br/>Interconnect</li> </ul>         | ACE up to 200% UM up to ~200%                                                                       |
| System<br>software  | <ul><li>Compiler</li><li>MPI implementation</li></ul>                              | ACE ~20% UM ~20%<br>ACE ~20% UM variable (but needs<br>more investigation)                          |
| Usability           | <ul><li>MTBF</li><li>jitter</li><li>slowdown (throughput)</li></ul>                | Variable with service delivery<br>ACE ~10% UM ~10%<br>UM >200% -1000%                               |
| I/O                 | <ul> <li>Application</li> <li>I/O hardware architecture</li> <li>jitter</li> </ul> | UM up to 1000%<br>(Need to apply Shan et al, NERSC<br>methodology)<br>UM ~40% on some HPC platforms |

# Applications can change I/O strategies



Increasing output size and frequency

- Extend the IOR synthetic benchmarks from LLNL (used by Shan et al) to accommodate a greater range I/O strategies in a further ACE project to explore the performance dependency of the UM.
- Explore problem cases where I/O is an issue

#### The ACE project was

- funded by EPSRC (lead research council for UK academic HPC provision)
- managed by cross UK research council panels
- carried out by EPCC (University of Edinburgh) STFC Daresbury Laboratory ARCA (University of Cardiff) University of Cambridge HPC service
- undertaken in collaboration with many HPC services
- results will be made available via the EPSRC web site (<u>www.epsrc.ac.uk</u>)