

IFS: RAPS11 and model scaling

George Mozdzynski

Outline

- IFS RAPS11 benchmark
- Scaling IFS model on Power6
 - Speedup and Efficiency
 - Scaling problem areas
 - Weak scaling
- Scaling to 100K 1M threads
 - Rewrite or optimise our applications
 - Parallel programming languages
 - What do we need of future HPC systems

IFS RAPS11 benchmark

- Released January 2010, CY36R2
- IFS model only (no 4D-Var)
 - Sources cut down to called routines
- What's new in RAPS11
 - grib_api (supporting grib1 and grib2 standards)
 - T1279L149 (~16 km)
 - T2047L149 (~10 km)
 - Internet distribution (& USB disk)
 - T2047L149 data is 13 GB
- Updates (at raps@ftp.ecmwf.int)
 - 4 in total, last update added 8th Oct

IFS RAPS11 benchmark

- Model resolutions T159, T399, T799, T1279 and T2049
- Full outputs from IBM Power6 (all resolutions)
- No output of model fields (i.e. not an I/O benchmark)
- Reference job scripts
 - 24 time steps

Results of ERROR calculation

The error calculated from the results shows that the calculations are correct

Slide 4

0.16518 %

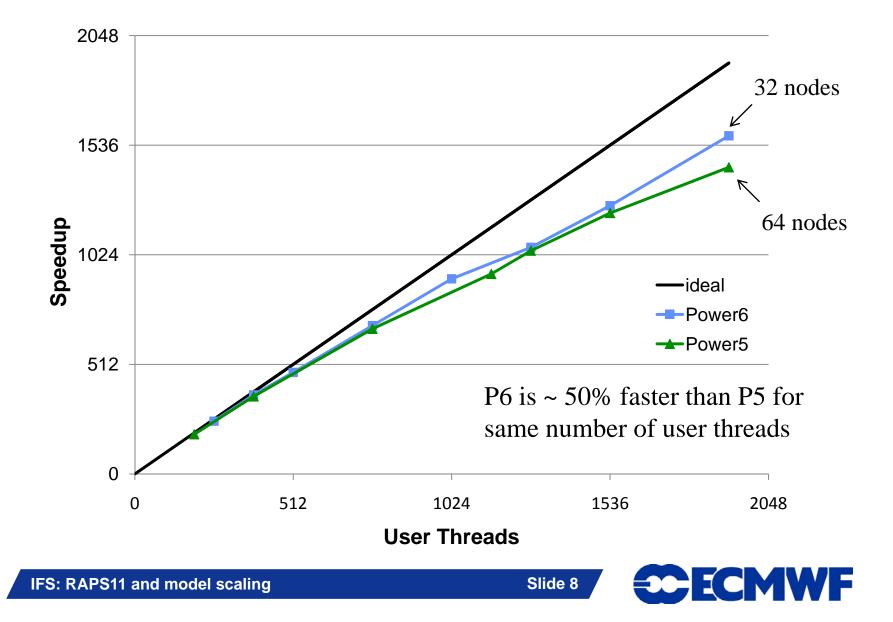
·CMWF

- test of correctness The maximum error is =
- Long run job scripts, for performance runs
 - use same executable as for reference runs
- Norms (SP,GP) should be bit-reproducible when changing
 - number of MPI tasks
 - number of OpenMP threads

IFS RAPS11 benchmark DR_HOOK_OPT=prof output provided for all model cases (T2047 extract)

Name of the executable : /fws2/lb/work/rd/mpm/RAPS11/T2047//bin/ifsMASTER							
Number of MPI-tasks : 512							
Number of OpenMP-threads : 8							
Wall-times over all MPI-tasks (secs) : Min=1020.070, Max=1025.730, Avg=1022.972, StDev=1.261							
Routines whose total time (i.e. sum) > 1.000 secs will be included in the listing							
Avg-%	Avg.time	Min.time	Max.time	St.dev	Imbal-%	<pre># of calls :</pre>	Name of the routine
7.91%	80.951	71.799	86.287	1.554	16.79%	6545408 :	MXMAOP
4.15%	42.488	39.259	47.132	1.530	16.70%	87748608 :	CLOUDSC
3.65%	37.345	31.398	43.424	1.999	27.69%	44742137979 :	CUADJTQ
3.62%	37.059	36.473	38.821	0.240	6.05%	350994432 :	LAITRI
3.59%	36.672	35.747	38.017	0.342	5.97%	482818560 :	VERINT
3.12%	31.937	27.864	36.514	1.297	23.69%	100352 :	>MPL-TRMTOL_COMMS(807)
3.03%	30.991	15.474	70.559	10.875	78.07%	98816 :	>MPL-TRLTOM_COMMS(806)
2.93%	29.964	3.977	71.212	12.580	94.42%	98816 :	>MPL-TRGTOL_COMMS(803)
2.45%	25.066	12.663	37.822	5.504	66.52%	1611 :	>MPL-IOSTREAMREAD_RECORD(650)
2.43%	24.853	8.287	33.075	3.370	74.94%	100352 :	>MPL-TRLTOG_COMMS(805)
2.21%	22.597	21.537	23.729	0.336	9.24%	175497216 :	LASCAW
2.03%	20.776	20.174	21.547	0.242	6.37%	87748608 :	VDFMAIN
1.85%	18.952	18.393	20.062	0.245	8.32%	789737472 :	LAITLI
1.70%	17.341	16.440	18.936	0.364	13.18%	87748608 :	VDFEXCU
1.55%	15.812	13.110	22.851	1.057	42.63%	98816 :	>BAR-BARRIERINSIGCHECK(718)
1.49%	15.241	6.446	25.483	4.342	74.70%	802816 :	>OMP-FTINV_CTL(1639)
1.40%	14.324	9.447	23.023	1.886	58 .9 7%	99840 :	>MPL-SLCOMM1_COMMS(509)
1.39%	14.183	13.788	14.387	0.076	4.16%	175497216 :	LARCHE
1.37%	14.056	8.137	25.275	2.968	67.81%	43874304 :	CUBASEN
1.18%	12.059	1.922	25.705	5.039	92.52%	43874304 :	CLOUDVAR
1.04%	10.594	6.716	16.324	1.017	58.86%	796672 :	>OMP-LTINV_CTL-INVERSE(1647)
1.03%	10.583	10.194	11.688	0.258	12.78%	786432 :	>OMP-WAMODEL2(1431)
0 .9 7%	9.930	0.000	18.834	4.970	100.00%	1024 :	>MPL-BROADCASTIOSTREAMGR(632)
0.94%	9.637	9.043	10.247	0.191	11.75%	790528 :	>OMP-CPG1(1025)
0.93%	9.484	9.059	9.978	0.152	9.21%	1702400 :	SRTM_SPCVRT_MCICA
0.90%	9.210	7.612	11.005	0.545	30.83%	790528 :	<pre>>OMP-LTDIR_CTL-DIRECT(1645)</pre>
0.90%	9.193	8.827	9.538	0.145	7.45%	43874304 :	CPDYDDH

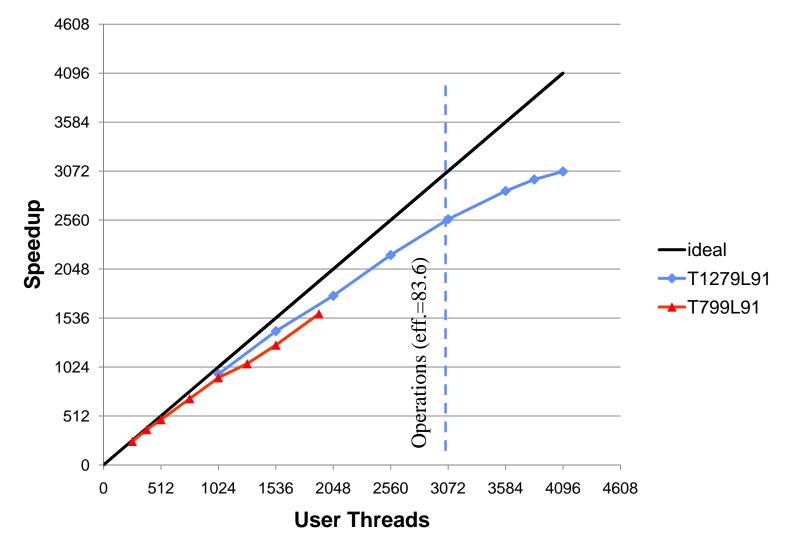
IFS: RAPS11 and model scaling


Outline

- IFS RAPS11 benchmark
- → Scaling IFS model on Power6
 - Speedup and Efficiency
 - Scaling problem areas
 - Weak scaling
 - Scaling to 100K 1M threads
 - Rewrite or optimise our applications
 - Parallel programming languages
 - What do we need of future HPC systems

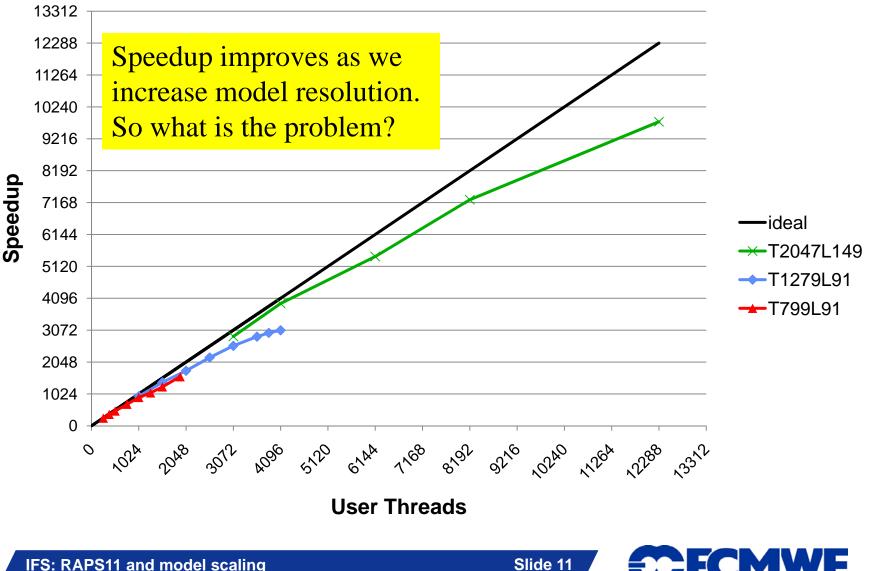
Power5: SpeedUp and Efficiency T799L91 model, 2 day forecast (CY33R1)								
November			parallel	serial				
2008			649849	115				
	User Threads = MPI tasks x OpenMP threads							
	User Threads	Actual Wall Time	Calculated Wall Time	Calculated SpeedUp	Calculated Efficiency %			
	192	3505.3	3500	185	96.6			
	384	1794.6	1808	362	94.3			
	768	958.5	962	678	88.3			
	1152	695.7	680	934	81.1			
	1280	623.2	623	1043	81.5			
	1536	533.2	539	1219	79.4			
	1920	453.7	454	1433	74.6			
	1	10 day fore	cast ~ 45 min					
IFS: RAPS11 and model scaling								

T799L91 model



Power6: SpeedUp and Efficiency T1279L91 model, 2 day forecast (CY36R4)

parallel	serial
1591806	114


User Threads	Actual Wall Time	Calculated Wall Time	Calculated SpeedUp	Calculated Efficiency %
1024	1675.7	1668	950	92.8
1536	1138.0	1150	1399	91.1
2048	899.9	891	1769	86.4
2560	725.1	736	2195	85.8
3072	619.7	632	2569	83.6
3584	555.8	558	2864	79.9
3840	533.3	528	2985	77.7
4096	518.8	502	3068	74.9
1		1587754	10 day fore	cast ~ 45 min
IFS: RAPS11 and mod	lel scaling	Slid		CMWF

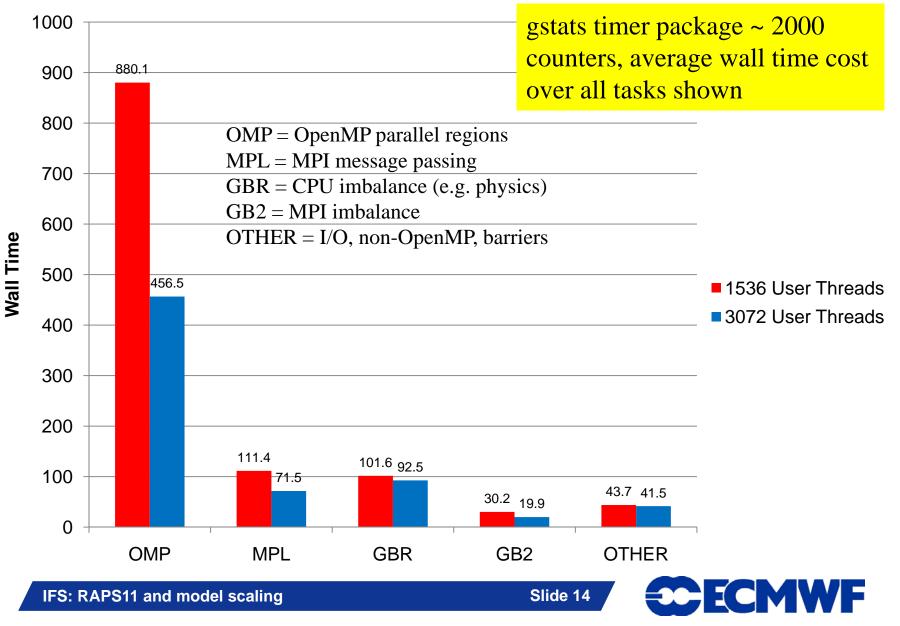
IFS model speedup on Power6 (8 threads per task)

IFS speedup on Power6 (+ T2047L149 RAPS11)

HPC systems: near future

Approaching limits in single core performance

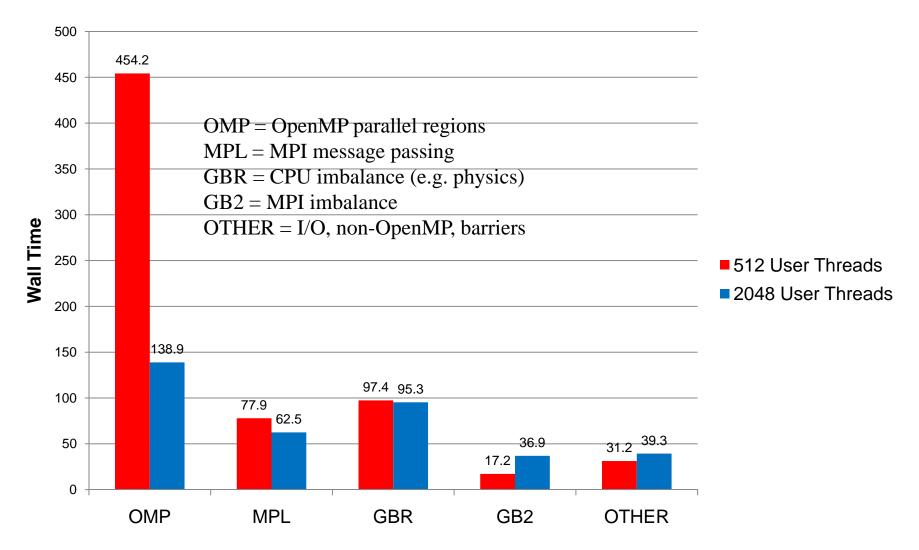
- Clock frequency, Cooling, Cost of electricity
- Trend
 - Increase in # cores (cores per socket)
 - Little change in single core performance
- How will this affect NWP models such as IFS?
 - Requirement: 10 day forecast in < 45 mins
 - Increasing model resolution
 - Good for scaling: more parallelism to exploit
 - Bad for scaling: more time-steps to execute


Weak scaling: IFS model, 10 day forecasts in ~ 45 minutes on Power6

Model Resolution	Time step (sec)	User Threads	Grid points per thread	Efficiency %
T799L91	720	1024	824	88
T1279L91	600	3840	557	78
T2047L149	450	18000**	303**	75**

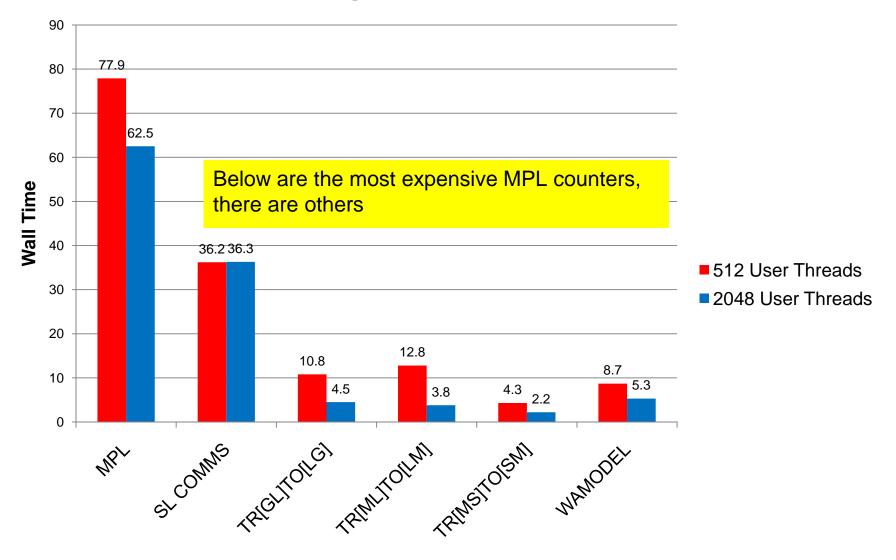
** - extrapolation based on runs up to 12288 User Threads (192 P6 nodes)

T1279 model – gstats counter summary



T159 model scaling: small model with 'large' number of user threads (4 threads per task)

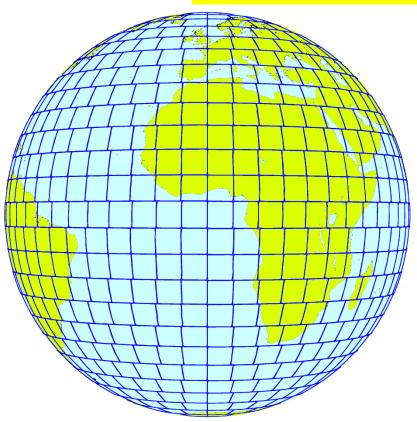
T159 model - gstats counter summary

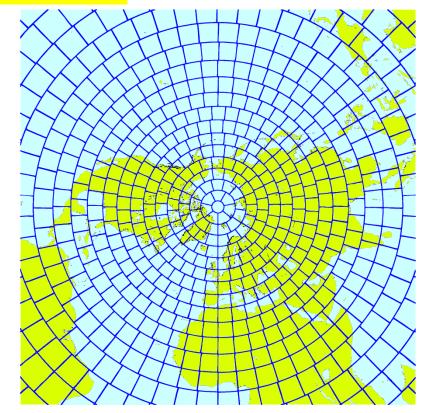


Slide 16

ECMWF

T159 model – MPL gstats counters

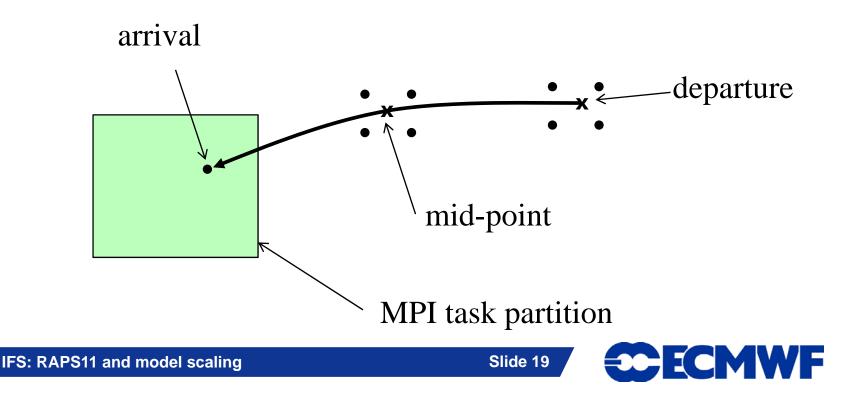



IFS: RAPS11 and model scaling

ECMW

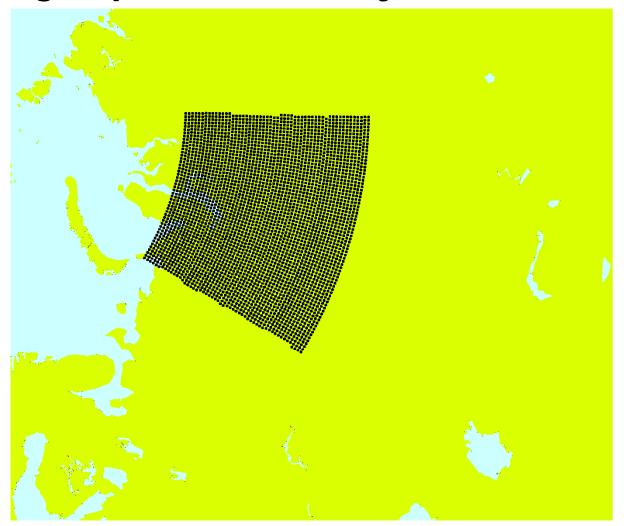
IFS grid point space: partitioning for 1024 MPI tasks

Each MPI task has an equal number of grid points

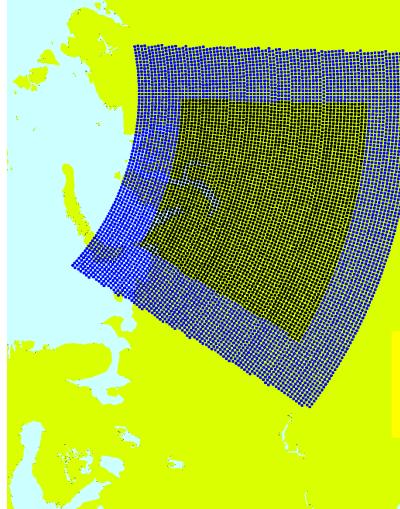


Semi-Lagrangian Transport

- Computation of a trajectory from each grid-point backwards in time, and
- Interpolation of various quantities at the departure and at the mid-point of the trajectory


Semi-Lagrangian Transport: T799 model, 256 tasks

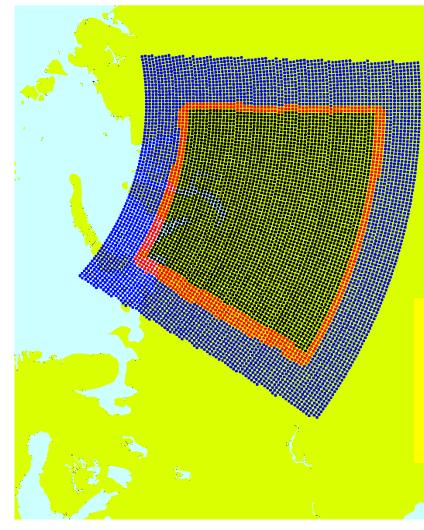
Task 11 encountered the highest wind speed of 120 m/s (268 mph) during a 10 day forecast starting 15 Oct 2004



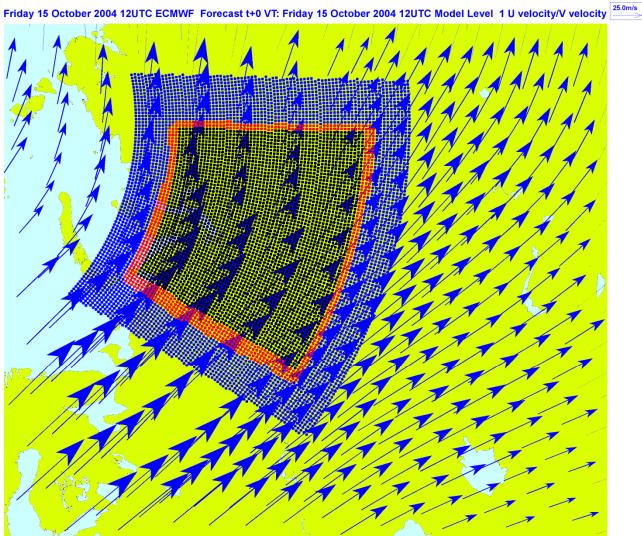
T799 model task 11 of 256 black: grid points owned by task 11

blue: halo area

Halo width assumes a maximum wind speed of 400 m/s x 720 s T799 time-step (288 km)

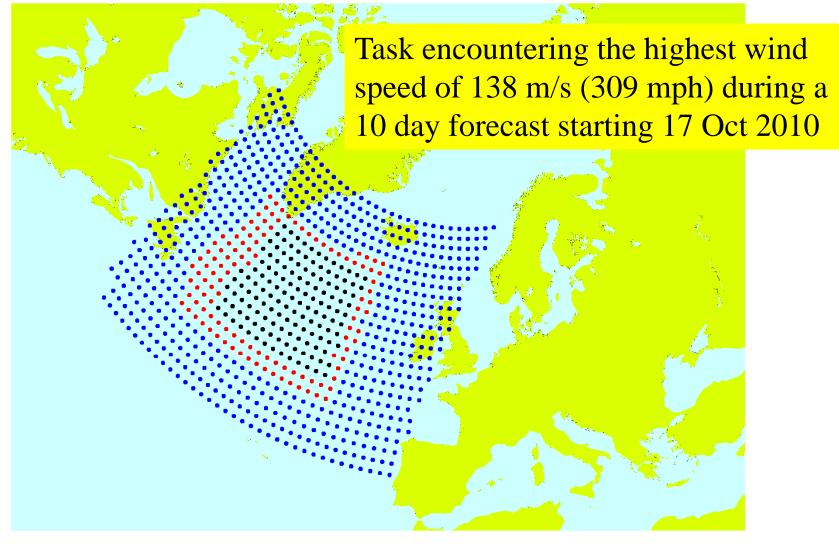

Get u,v,w wind vector variables (3) from 'neighbour' tasks to determine departure and mid-point of trajectory

red: halo points actually used

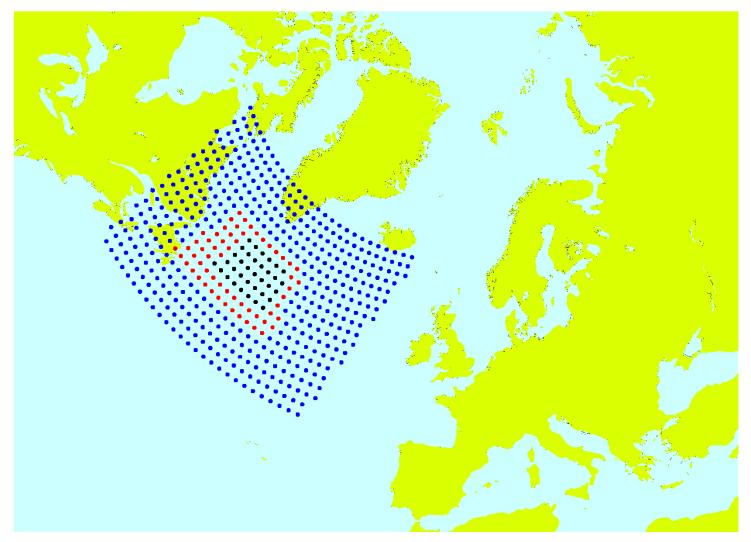


Get rest of the variables (26) from the red halo area and perform interpolations

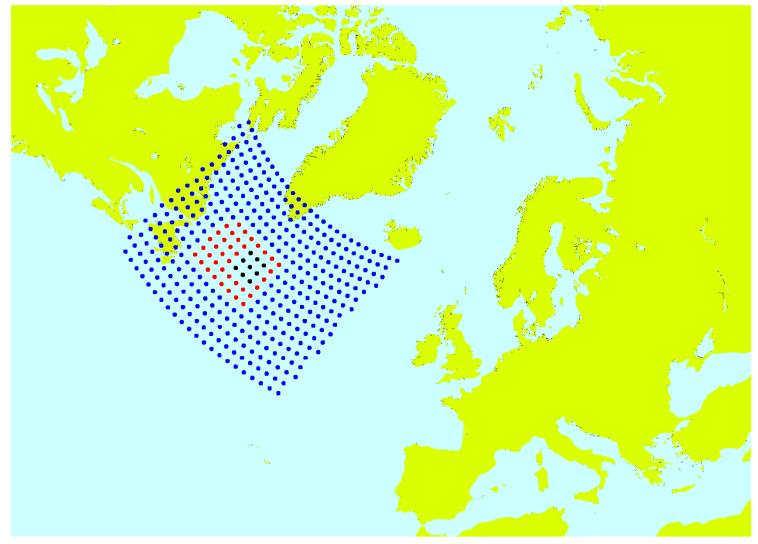
Note that volume of halo data communicated is dependent on wind speed and direction in locality of each task



Slide 24


T159 model task 37 of 256 tasks

Slide 25


T159 model task 128 of 1024 tasks

Slide 26

T159 model task 462 of 4096 tasks

IFS Semi-Lagrangian Comms

- SL comms scaling limited by
 - constant width halo for u,v,w (400 m/s x time step)
 - Halo volume communicated, which is a function of wind speed and direction in locality of each task
- 'Halo-lite' approach tested
 - Only get (using MPI) grid columns from neighbour tasks that your task needs, i.e. only the red points
 - Requires more MPI communication steps (e.g. mid-point, departure point)
 - No faster than current approach due to overheads of above

Slide 28

- Potential for optimisation using coarrays (F2008)

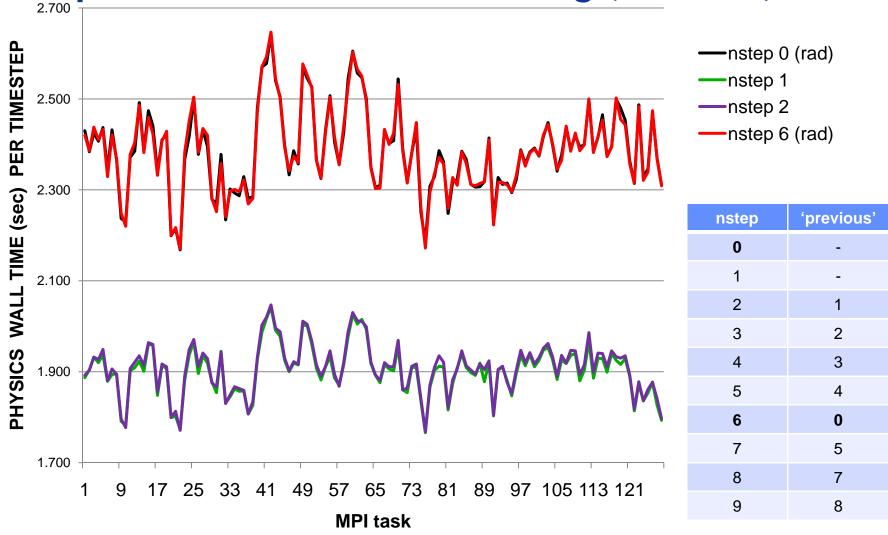
IFS Semi-Lagrangian Comms

Optimisation made to 4D-Var minimisation jobs (ifsmin)

- Only first minimisation iteration requires constant width halo, i.e. 'the blue points'
- Remaining minimisation iterations (2 up to 70) use halo [procs,mask] info saved per time-step in first iteration, i.e. only 'the red points' are communicated

Slide 29

- 3 percent wall time improvement to 4D-Var ifsmin jobs


Physics Computations

- Take 34 percent of T1279L91 model wall time
 - Using 384 MPI tasks x 8 OpenMP threads = 3072 user threads
- About 3 percent is CPU work imbalance over MPI tasks
- Physics load balancing experiment
 - Global exchange of physics 'cost' info from earlier time step
 - Calculation of grid column 'physics input' comms schedule
 - Senders: pack data and post one or more MPI_SEND's
 - Receivers: post one or more MPI_RECV's and unpack data

- Call 'balanced' physics
- Receivers return 'physics output' back to senders...
- Other approaches to load balance computations?

T1279 model 128 tasks : using 'previous' time step cost to drive load balancing (nradfr=6)

T1279 384 MPI tasks: physics cost

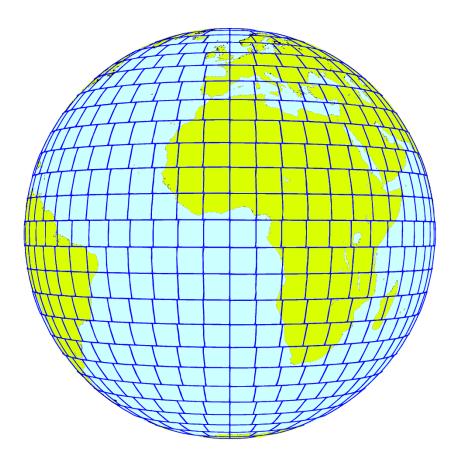
Slide 32

Wednesday 1 September 2010 00UTC ECMWF Forecast t+12 VT: Wednesday 1 September 2010 12UTC Surface:

Physics Load Balancing (conclusion)

- Overall performance of IFS model with load balanced physics was just faster (<1 percent) than using the original unbalanced physics
- Too much overhead in MPI message passing
 - mostly in sending grid column input and receiving back grid column output
 - Potential for optimisation using coarrays (F2008)
- Hard to hide load balancing code
 - the original code is already too complex with many arguments passed to ECMWF physics main routine (CALLPAR)
- Need significant performance gain before implementing such load balancing code
 - depends on more imbalance in future physics calculations

Scaling issues: today


- Static Load Imbalance
 - per MPI task, per OpenMP thread
- Dynamic Load Imbalance
 - e.g. physics computations, semi-Lagrangian comms
- Jitter
- MPI Comms Latency, Topology
- OpenMP overheads, NUMA
- Input/Output
- Shell scripts

Scaling to 100K - 1M threads ?

- Next 5 to 10 years ?
- Can this still be done with MPI + OpenMP ?
- Partitioned global address space (PGAS) languages?
- Fortran 2008 coarrays
- Jitter free systems
- Need comms to speed up with the increase in cores
- Overlap compute and comms?
- Tools (debuggers, profilers)
 - That work reliably and fast at high core counts
 - That work with large applications

Questions

T159L91 model using 2048 user threads: Are we running out of parallelism?

	512 tasks x 4 threads	Comments	
Grid Point computations	Model grid: 35,718 grid points each task: 70-71 each thread: 17-18 SL halo: >1000 grid points (1 hr time- step) Radiation grid (T63): 6114 grid points each task: 11-12 grid points each thread: 3-4 grid points	1 nproma chunk per thread, so no OpenMP load balancing Halo is ~14 times size of grid points owned by each task	
Fourier transforms	160 lats x 91 levels = $14,560$ Partitioning 32 x 16 each task: 5 lats x 5-6 levels each thread: 1-2 lats x 5-6 levels	Poor static distribution	
Legendre transforms	160 waves x 91 levels Partitioning 32 x 16 each task: 5 waves x 5-6 levels each thread: 1-2 waves x 5-6 levels	Poor static distribution	

Power6: SpeedUp and Efficiency T799L91 model, 2 day forecast (CY36R4)

parallel	serial
475124	65

User Threads	Actual Wall Time	Calculated Wall Time	Calculated SpeedUp	Calculated Efficiency %
256	1925.9	1921	247	96.4
384	1286.2	1302	369	96.2
512	1001.3	993	475	92.7
768	685.5	683	693	90.3
1024	521.2	529	912	89.0
1280	448.9	436	1059	82.7
1536	379.2	374	1253	81.6
1920	300.8	312	1580	82.3
1		475189	10 day fore	cast ~ 45 min
IFS: RAPS11 and mod	lel scaling	Slide	» 38	CMWF