IFS Scalability and Computational Efficiency

Deborah Salmond & Mats Hamrud

One of ECMWF's two IBM Power6 clusters

One of ECMWF's two IBM Power6 clusters

c1a : 24 frames = 24*12*32 = 9216 cores = 18432 threads

SMT: 2 Threads per core Peak per core : 18.8 Gflops IB switch : 8 links per node

Plan of talk

- IFS 10-day forecast and 4D-Var
 - Scalability & Computational efficiency
 - Comparison of Forecast and 4D-Var
 - Profiles of different parts of 4D-Var
 - Study of I/O scalability
 - Recent Optimisations and Scalability Improvements
- Plan to improve scalability of 4D-Var

4-point plan to improve scalability of IFS

- Analysis
- Short term
 - Technical improvements in scaling in the current IFS
- Medium term
 - Major restructuring of 4D-Var code
- Longer term
 - Algorithmic changes

T1279 Forecast runs up to whole cluster

14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 6

CECMWF

Speed-up of T1279 Forecast

4D-Var and 10-day forecast

Speed-up of T1279 4D-Var

Speed-up of T1279 4D-Var

Speed-up of Different parts of 4D-Var

Computational efficiency of T1279 4D-Var & 10-day Forecast on 48 nodes

Step	WALLTIME in seconds	%peak
Traj_0	395	3.1
Min_0 (T159)	540	1.5
Traj_1	261	4.5
Min_1 (T255)	495	2.7
Traj_2	282	4.3
Min_2 (T255)	449	2.8
Traj_3	430	2.9
4D-Var -Total	2854	2.9
10 day Forecast	2825	8.1

14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 12

Computational efficiency of T1279 4D-Var & 10-day Forecast on 48 nodes

Step	WALLTIME in seconds	%peak	Description
Traj_0	395	3.1	T1279 : I/O - full obs
Min_0 (T159)	540	1.5	T159 : 70 iterations
Traj_1	261	4.5	T1279 : 72 time steps
Min_1 (T255)	495	2.7	T255 : 25 iterations
Traj_2	282	4.3	T1279 : 72 time steps
Min_2 (T255)	449	2.8	T255 : 25 iterations
Traj_3	430	2.9	T1279 : I/O - full obs
4D-Var -Total	2854	2.9	
10 day Forecast	2825	8.1	T1279 : 1440 time steps

14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 13

CECMWF

Top 10 routines from Xprofiler and pmapi

10	-day Forecas	5†		Min_2	
%time	name	Mflops	%time	name	Mflops
5.4 4.5 3.9	.datb13c .cloudsc_ .laitri_	6132 718 1299	7.3 6.1 5.5	.lwvdrad_ .cloudstad_ .lwvdrtl_	383 443 651
2.8	.lascaw_	147	5.1	.lwvdr_	357
2.2	.srtm_spcvrt_	_ 782	3.7	.lwcad_	417
2.2	_exp		2.9	.cloudsttl_	554
2.1	.vdfmain_	740	2.1	_exp	
1.9	.laitli_	1035	2.0	.lwctl_	652
1.8	.cloudvar_	448	1.7	stripe_hal	_pkts
1.8	.srtm_reftra_	600	1.6	pow	
1.8	.cuadjtq_	1168	1.3	.swniad_	314
1.8	.radlswr_	223	1.1	.datb13c	2672

GSTATS

- Timing around significant parts of the IFS code
- Classify as
 - 1. PARALLEL = OpenMP parallel sections
 - 2. SERIAL = non-OpenMP
 - 3. COMMS = MPI communications
 - 4. I/O = I/O + 'I/O support'
 - 5. BARRIERS
 - 6. OTHER
- Runs with extra barriers put around communications so barriers time is artificially high
 - Part of the barrier time comes from jitter expect this to reduce on P7
- Runs not dedicated but used co-scheduler

GSTATS for T1279 4D-Var & Forecast on 48 Nodes

*Parallel is the part that scales well and has best Mflops - including Legendre transform (5% of total for Forecast & 2% of total for 4D-Var)

GSTATS for 4D-Var sub-tasks on 48 nodes

Scalability of 4D-Var: 48 to 96 nodes

Scalability of Traj_0: 48 to 96 nodes

Study of I/O scalability

 Initial conditions(PE-0 and broadcast), ODB(parallel), FDB(asynchronous), internal files between steps.

• GSTATS for ODB - Traj_0

					48 node	96 nodes	Speed-up	Secs lost
1791	IO-	DB	in	READOBA	17.1	27.4	0.62	18.8
1792	IO-	DB	in	WRITEOBA	40.4	41.2	0.98	21.0

- I/O and comms related to I/O
- JIO for Initial conditions Traj_0

Nodes	MSEC	MB	RATE	CALLS	File
48	2291.2	2417.2	1055.0	26793	ICMGGINIUA
96	3520.3	2417.2	686.7	26793	ICMGGINIUA

GSTATS for 48 Node runs of Min(T255) & T255 forecast with same number of timesteps

14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 21

ECMWF

Look for more Scalability

- Use of profilers to analyse performance
 - Xprofiler, Dr. Hook, HPM, GSTATS, JIO
- Reduce time for scripts now takes 12% of total
- More Parallelism
 - Higher resolution
 - ECMWF strategy
 - More vertical levels in 2011
 - Horizontal resolution to 10km in 2014/15
 - Reduce NPROMA?
- Reduce barrier time
 - 50% comes from jitter
 - 50% from Load-imbalance

NPROMA

Recent Optimisations and Scalability improvements-1 36R1 1-10% Message passing optimisation of DDH (Forecast) **Optimisations for IBM Power6** 10% Optimisation of Operational Post-processing (Forecast) 20% 2% Optimisations of TL/AD Radiation and Dynamics 36R2 8% Script optimisation 1% Improve parallelisation of Control Vector Dot-Product Parallelise distribution of spectral fields for read of spectral data 1% OpenMP for distribution of vertical correlation matrices for wavelet Jb 1% 1% MPL_ALLREDUCE function changed to use a binary tree construct 3% Optimisation of SL Comms for 4D-Var Minimisation 1% Improve flexibility in partitioning of spectral space 2% Improvements to message passing in Rain Assimilation Speed-up bufr2odb jobs Optimisation of LW radiation 1% 1% Improvement of parallelism for control vector I/O Improve scalability of the implicit Coriolis solver 1% 14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 24

Recent Optimisations and Scalability improvements-2

36R3

Move Rttov9 allocations to higher level				
OpenMP Parallelisation of Snow analysis				
Redistribute ODB for All-sky data	2%			
Optimisation of ODB MPI Communications	1%			
36R4				
Optimisation of UPDTIM (remove copies)	1%			
Optimisation of "here documents" (scripts)				
Optimisation of new CLOUDSC	1%			
Optimisation of TL/AD Physics	1%			
VarBC order independent sums				
Optimise reading of RTTOV coefficient files	3%			
Optimisation of LASCAWTL/AD (copies at subroutine call)	1%			
Load-Balancing of Bufr20DB				
Optimisation of ODB message passing	1%			

14th Workshop on the Use of HPC in Meteorology: $1^{st}-5^{th}$ Nov 2010 Slide 25

Top 10 routines from Xprofiler and pmapi

10	-day Forecas	5†		Min_2		
%time	name	Mflops	%time	name	Mflops	
5.4 4.5 3.9	.datb13c .cloudsc_ .laitri_ lascaw	6132 718 1299 147	7.3 6.1 5.5	.lwvdrad_ .cloudstad_ .lwvdrtl_ .wwwdr	383 443 651 357	*445
2.2	.srtm_spcvrt_	_ 782	3.7	.lwcad_	417 554	
2.1 1.9	e_p .vdfmain_ .laitli	740 1035	2.9 2.1 2.0	_exp .lwctl	652	
1.8 1.8	cloudvar .srtm_reftra_	448 600	1.7 1.6	stripe_hal	_pkts	
1.8 1.8	.cuadjtq_ .radlswr_	1168 223	1.3 1.1	.swniad_ .datb13c	314 2672	

* Loops re-ordered to get better use of streaming from memory

4-point plan to improve scalability

Analysis

- Scalability Project
 - Better understanding of opportunities to improve scalability of 4D-Var
 - Report from the IFS Scalability Project: Mats Hamrud
 http://www.ecmwf.int/publications/library/do/references/list/14#2010
- Short term
 - Technical improvements in scaling within the current IFS
- Medium term
 - Major restructuring of 4D-Var code
 - Run 4D-Var as a single execution
- Longer term
 - 4D-Var Algorithmic changes
 - Weak constraint 4D-Var \rightarrow sub-windows can run in parallel
 - Explore the use of EnKF
 - Reformulation of Non-Hydrostatic model

In Memory of Two benchmarkers

Bob Carruthers CDC, Cray, SGI, IBM

Philippe Tesson CDC, Cray, SGI

14th Workshop on the Use of HPC in Meteorology: 1st-5th Nov 2010 Slide 28

Questions?

