

Active Fire Observations

Presenter: Martin Wooster, King's College London (KCL) G. Roberts, W. Xu, P. Freeborn, A. Lattanzio, Y. Govaerts, J. Kaiser, M.Schultz, EUMETSAT LandSAF

European Science Foundation Exploratory Workshop

Farnham Castle, UK, 14-16 September 2009

Active Fire Detections - Theory

• Fires have very high temperatures (> 600 K) compared to their ambient surroundings

Active Fire Detections - Theory

• Fires have very high temperatures (> 600 K) compared to their ambient surroundings

• The high temperatures result in intense IR radiant energy emissions, more so in MIR (3-5 μm) than TIR region.

Active Fire Detections - Theory

infrared composite

• Fires have very high temperatures (> 600 K) compared to their ambient surroundings

• The high temperatures result in intense IR radiant energy emissions, more so in MIR (3-5 μ m) than TIR region.

Sub-Pixel Spaceborne Fire Detection

Zhukov et al. (2006)

Sub-Pixel Spaceborne Fire Detection

Possible to detect active fires covering < 1000th of pixel!

Fire Radiative Power & Energy

Fire Radiative Power Record (1 fire)

Total Fuel Consumed vs. FRE (many fires)

Example LEO Fire Data

ATSR (World Fire Atlas)

http://dup.esrin.esa.it/ionia/wfa/index.asp Long-term (since '95) but only night.

MODIS Active Fires

http://rapidfire.sci.gsfc.nasa.gov/ Every 6 hrs global since 2002.

TRMM Global Fires

ftp://ftp-tsdis.gsfc.nasa.gov/pub/yji/DAILY// http://eobglossary.gsfc.nasa.gov/ Observatory/Datasets/fires.trmm.html

~ Monthly diurnal sampling, but only tropics

EO-derived fire intensity measured used to investigate a long-standing and oft-mentioned but unproven hypothesis, important for carbon flux modelling and potentially Kyoto reporting from 2008 onwards: *Boreal forest fires burn less intensely in Russia than in North America, due to a much lower incidence of crown fire activity' (Kasichke, 1999)* ESF Exploratory Workshop, Farnham Castle, UK: 14-16 Sept 2009

Russian Active Fires (MODIS) Terra/Aqua – Jun/Jul/Aug 2003)

Russian Boreal Forest Fires

- Fire intensity mean ~ 42 MW/fire pixel
- No relationship with % tree cover

North American Active Fires

- Fire intensity mean ~ 70 MW/fire pixel
- Increasing in proportion to % tree cover

Wooster, M.J and Zhang, Y.-H., Boreal Forest Fires Burn Less Intensely in Russia than in North America (2004) Geophysical Research Letters, 31, doi:10.1029/2004GL020805

Geostationary Fire Detection Methods Based on Polar Orbiting Approaches

MSG SEVIRI

15 min imaging freq.

12 channel imager

SEVIRI Fire Radiative Power (FRP) Product

University of London

FRP Pixel product generated for four regions:

- Euro (Europa): Red
- NAfr (Northern Africa): Magenta
- SAfr (Southern Africa): Blue
- SAme (Southern America): Brown

SEVIRI FRP Pixel Product

Simulated "Global product" generated from FRP pixel derived for different dates only (as a visual example; normally relatively few fires are burning in North and South Africa on the same date)

SEVIRI Fire Radiative Power (FRP) Product

University of London

FRP Pixel product generated for four regions:

- Euro (Europa): Red
- NAfr (Northern Africa): Magenta
- SAfr (Southern Africa): Blue
- SAme (Southern America): Brown

SEVIRI FRP Pixel Product

Simulated "Global product" generated from FRP pixel derived for different dates only (as a visual example; normally relatively few fires are burning in North and South Africa on the same date)

METEOSAT SEVIRI FRP - "Quality Product" Dataset

"Quality Product" reports the processing status of each pixel - Fire Detected & FRP measured, cloudcovered, etc.

Comparison to MODIS indicates a false fire detection rate of 6 - 8 %.

Modelling SEVIRI Observations

University of London

Analysis of real data – FIR filter removed on MSG8

FRP Per-Pixel Error Budget

University of London

Radiance = Uncertainty in Fire Pixel Radiance Measure Background = Variation in Pixel Background Window Radiance Transmissivity = Uncertainty in Atmospheric Transmission FRP Coefficient = Uncertainty derived from Planck Function Approximation

FRE-Derived Fuel Consumption vs Fuel Load

Fire Seasonality and Location

Temporal Emissions Variation

 \rightarrow NH Africa 362 - 414 Tg \rightarrow SH Africa 402 - 440 Tg

SEVIRI FRP vs MOPITT CO

Total FRP over southern Africa

Mean Per-Pixel FRP over southern Africa

MODIS & SEVIRI Fire Detection Comparison

All MODIS detections 01 – 14 Feb 2004

SEVIRI detections at MODIS overpass times only (± 6 minutes) 01 – 14 Feb 2004

All SEVIRI detections for all SEVIRI timeslots 01 – 14 Feb 2004

SEVIRI vs MODIS FRP Intercomparison

Comparing MODIS and SEVIRI Record

Comparing MODIS and SEVIRI Record

FRP Statistical Distributions SEVIRI vs MODIS

Frequency Magnitude Distributions for 2004

FRP Statistical Distributions SEVIRI vs MODIS

Frequency Magnitude Distributions for 2004

sensor saturation

View Worsens at High Zenith Angles

Europe LSA SAF Region 9 – 17 Aug 08

In Europe most fires are in East and have have SEVIRI view zenith angle > 60°

ESF Exploratory Workshop, Farnha

FRP_PIXEL per-area comparison to MODIS

	Image Dates (2008)	Fire Detection Omission Error (%)	Fire Detection Comission Error (%)	Slope of linear best fit between SEVIRI-to- MODIS <u>per-fire</u> FRP	Slope of linear best fit between SEVIRI-to- MODIS <u>per-</u> <u>area</u> FRP
North Africa	1 - 8 Dec	62%	8%	0.96	0.91
South Africa	19 - 24 Aug	71%	6%	0.97	0.80
South America	14 - 24 Aug	85%	9%	0.97	0.30
Europe	9 - 17 Aug	95%	1%	0.88	0.13

Combining Polar and Geostationary Data to Synthesize Improved Product

GOES FRP System Prototype

GOES-detected fires (red) Superimposed on landcover map

Asian Geostationary Systems

105° E

FY2C (China)

140° E

MTSAT (Japan)

Sentinel-3 Spacecraft

Sea & Land Surface Bands

- absolute rad. accuracy (S1-S6) : <5% (EOL) <2% (BOL)
- absolute rad. accuracy (\$7/8/9)
 : 0.2 K
- polarisation sensitivity < 0.07 (S1-S6) or < 0.10 (S7/8/9)
- stability (S1-S6): <0.1%
- stability (S7/8/9): <0.08K

Band	λcente r [µm]	Δλ [μm]	SNR [-] / Ne∆T [mK]	SSD [km]
S1	0.555	0.02	20	0.5
S2	0.659	0.02	20	0.5
S3	0.865	0.02	20	0.5
S4	1.375	0.015	20	0.5
S5	1.61	0.06	20	0.5
S6	2.25	0.05	20	0.5
S7	3.74	0.38	80 mK	1.0
S8	10.95	0.9	80 mK	1.0
S9	12	1.0	80 mK	1.0

Active Fire Bands

Band	λcenter [μm]	Δλ [μm]	Tmax [K]	SSD [km]
F1	3.74	0.38	500	1.0
F2	10.95	0.9	400	1.0

AATSR heritage

SLSTR new bands

SLSTR Channels

Sea & Land Surface Bands

- absolute rad. accuracy (S1-S6) : <5% (EOL) <2% (BOL)
- absolute rad. accuracy (\$7/8/9)
 : 0.2 K
- polarisation sensitivity < 0.07 (S1-S6) or < 0.10 (S7/8/9)
- stability (S1-S6): <0.1%
- stability (S7/8/9): <0.08K

Band	λcente r [µm]	Δλ [μm]	SNR [-] / Ne∆T [mK]	SSD [km]
S1	0.555	0.02	20	0.5
S2	0.659	0.02	20	0.5
S 3	0.865	0.02	20	0.5
S4	1.375	0.015	20	0.5
S5	1.61	0.06	20	0.5
S6	2.25	0.05	20	0.5
S7	3.74	0.38	80 mK	1.0
S8	10.95	0.9	80 mK	1.0
S9	12	1.0	80 mK	1.0

Active Fire Bands

Band	λcenter [μm]	Δλ [μm]	Tmax [K]	SSD [km]
F1	3.74	0.38	500	1.0
F2	10.95	0.9	400	1.0

AATSR heritage

SLSTR new bands

Do We Require Further Information on Small-Fires Component of the Fire Regime?

• Fire regime component with FRP < 10 MW is sampled by no sensor, but there are many fires in this region \rightarrow thus they may release significant emissions.

• Higher spatial resolution data can tell us.

•May allow site-specific emissions factors (P_{flame}).

100 In global fire record Day time from BIRD hi-res data ~ Number of hot clusters Night time 80 98% of total FRP comes from fires capable of 60 being seen by MODIS. AVHRR 40 •93% by fires capable of (A)ATSR being seen by SEVIRI. MODIS 20 • But likely to be O strongly biased 0.1 1000 10000 100 1 ೧ FRP, MW

Real inflexion point?

University of Lond