What's in the Smoke?

M. O. Andreae Max Planck Institute for Chemistry, Mainz, Germany

What and how much do biomass fires emit?

- climatically relevant only when there is no regrowth - e.g., deforestation NO_x, CO, CH₄, other hydrocarbons - Ingredients of smog chemistry, greenhouse gases Halogenated hydrocarbons (e.g. CH₃Br) - stratospheric ozone chemistry Aerosols & aerosol precursors (NH₃, SO₂) - light scattering and absorbing, cloud condensation nuclei

Open issues related to "What"

- Measurements of some pyrogenic species are difficult (especially OVOC, HONO, NH₃, etc.) and therefore sparse
- Some measurements (esp. FTIR) suggest there are no major unmeasured species, but true closure experiments have not been made
- Modeling of key secondary species in plumes (O₃, acetic acid,...) is still unsatisfactory: Are we missing important emission species or reaction paths?
- Gas/aerosol partitioning is poorly understood. What is the role of semivolatile species? How does the primary mixture affect smoke aerosol evolution?

"How much?" (and "When and Where")

The "classical" approach is still dominant today (Seiler & Crutzen, 1980):

"The total amount of biomass M burned annually in a biome is approximately given by the equation:

$M = A \times B \times \alpha \times \beta$ [g dry matter per year]

where A = total land area burned annually [m²/yr], B = the average organic matter per unit area in the individual biomes [g(dm)/m²], α = fraction of the average above-ground biomass relative to the total average biomass B, and where β = the burning efficiency of the above-ground biomass."

 To get species emissions, we then multiply with an emission factor.

Biomass burned worldwide (9200 Teragram d.w. annually)

Combined with...

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 15, NO. 4, PAGES 955-966, DECEMBER 2001

Emission of trace gases and aerosols from biomass burning

M. O. Andreae and P. Merlet

Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

Abstract. A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research

Species	Savanna and Grassland ^b	Tropical Forest ^c	Extratropical Forest ^d	Biofuel Burning ^e	Charcoal Making ^f	Charcoal Burning ^f	Agricultural Residues ⁱ
CO ₂	1613 ± 95	1580 ± 90	1569 ± 131	1550 ± 95	440	2611 ± 241	1515 ± 177
CO	65 ± 20	104 ± 20	107 ± 37	78 ± 31	70	200 ± 38	92 ± 84
CH_4	2.3 ± 0.9	6.8 ± 2.0	4.7 ± 1.9	6.1 ± 2.2	10.7	6.2 ± 3.3	2.7
Total nonmethane	3.4 ± 1.0	8.1 ± 3.0	5.7 ± 4.6	7.3 ± 4.7	2.0	2.7 ± 1.9	$(7.0)^{h}$
hydrocarbons							× ,
C_2H_2	0.29 ± 0.27	0.21-0.59	0.27 ± 0.09	0.51 - 0.90	0.04	0.05 - 0.13	$(0.36)^{\rm h}$
C_2H_4	0.79 ± 0.56	1.0 - 2.9	1.12 ± 0.55	1.8 ± 0.6	0.10	0.46 ± 0.33	$(1.4)^{h}$
C_2H_6	0.32 ± 0.16	0.5 - 1.9	0.60 ± 0.15	1.2 ± 0.6	0.10	0.53 ± 0.48	$(0.97)^{h}$
C_3H_4	0.022 ± 0.014	0.013	0.04 - 0.06	$(0.024)^{\rm h}$	_	$(0.06)^{\rm h}$	$(0.032)^{h}$
C_3H_6	0.26 ± 0.14	0.55	0.59 ± 0.16	0.5 - 1.9	0.06	0.13-0.56	$(1.0)^{h}$
C_3H_8	0.09 ± 0.03	0.15	0.25 ± 0.11	0.2 - 0.8	0.04	0.07 - 0.30	$(0.52)^{h}$
1-butene	0.09 ± 0.06	0.13	0.09 - 0.16	0.1 - 0.5	_	0.02 - 0.20	$(0.13)^{h}$
i-butene	0.030 ± 0.012	0.11	0.05 - 0.11	0.1 - 0.5	_	0.01 - 0.16	$(0.08)^{\rm h}$
trans-2-butene	0.024 ± 0.014	0.05	0.01 - 0.05	0.05 - 0.3		0.01-0.06	$(0.04)^{h}$

Table 1. Emission Factors for Pyrogenic Species Emitted From Various Types of Biomass Burning^a

Max Planck Institute for Chemistry, Mainz, Germany

MAX-PLANCK-GESELLSCHAF

Even sophisticated models basically use this approach in the source parameterization

Can't we do better?

Aerosol emissions make the high variability visible – it also applies to the trace gases!

Key emitted species by combustion type:

- Non-flaming (pyrolysis, smoldering) – CO
 - CH₄, most VOCs
 - CH₃CI, CH₃CN, HCN, NH₃, ...
 - Organic aerosol
- Flaming
 - $-CO_2$
 - $-NO_X, N_2$
 - "Black carbon", "soot carbon"

Measures of flaming/smoldering ratio:

CO/CO₂ ratio

- Combustion efficiency (CE):
 CO₂/(CO₂ + CO + VOC + OC + ...)
- Modified combustion efficiency (MCE): CO₂/(CO₂ + CO)

Key emitted species scale with MCE:e.g. VOC and OVOC emissions:

Yokelson et al., ACP 2009

Max Planck Institute for Chemistry, Mainz, Germany

Key emitted species scale with MCE:

• e.g. particle number emission

Aerosol emission factor is proportional to emission ratio (dCO/dCO_2) ER(AerosolMass/CO) is ~ constant!

Single scattering albedo of biomass burning aerosol increases with decreasing combustion efficiency

Variability within plume is similar to variability between biomes:

There is a very close relation between the emission of CO and CN particles from fires: about 20 cm⁻³ CN per ppb CO!

To predict emissions we would need:

 Amount of fuel burned and F/S ratio (or MCE)

- Or -

- Amount of CO₂ and CO emitted
 And –
- Fuel nitrogen (and halogen) content

Depending on the application, this information can come from:

Observation only

- Remote sensing of CO
- Fire radiated energy
- Burnt area, fire pixels, fuel loading and condition, fire weather, topography
- Modeling only, e.g. in climate models with biosphere

- Fuel loading and condition, fire climate or weather, ...

 Combination of observation and modeling, data assimilation, etc.

What do we need?

- Targeted fire experiments to determine:
 - Relationship between FRE and biomass burned (and F/S ratio?)
 - Relationship between fuel conditions, fire weather, terrain slope, etc. and F/S ratio
 - -Remotely sensed proxies of F/S ratio
 - Smoke SSA?
 - Ratio CO/FRE?

Injection height

Deforestation fire, Brazil: a "Smoking Cloud"

Smoke detraining from cloud top

Smoldering in the evening remains at the surface

532 nm Total Attenuated Backscatter, /km /sr Begin UTC: 2009-02-09 13:52:41.9192 End UTC: 2009-02-09 14:15:15.1341

Version: 2.02 Expedited Image Date: 02/10/2009

CALIPSO

Depolarization Ratio Begin UTC: 2009-02-09 13:52:41.9192 End UTC: 2009-02-09 14:15:15.1341

Version: 2.02 Expedited Image Date: 02/10/2009

CALIPSO

1.0

0,9

0.8

. 0.7

. 0.6

0.5

0.4

. 0.3

0.2

0.1

0.0

Combination of

- Emission model
- Injection model
- Transport model
- Chemical process model

gives accurate large- and meso-scale prediction of biomass smoke distributions

