

Generation and assimilation of IASI level 2 products

Peter Schlüssel, Thomas August, Arlindo Arriaga, Tim Hultberg, Nikita Pougatchev, Peter Bauer, Gábor Radnóti

IASI level 2 product generation

Properties of the Operational IASI L2 Processor (1/3)

- For a best use of IASI measurements the level 2 processing combines IASI with concurrent measurements of AVHRR and AMSU-A to detect clouds and to derive cloud parameters
- IASI stand-alone processing is used for geophysical parameters retrieval
- Inclusion of NWP forecast
 - Surface pressure as reference for the profiles to be retrieved
 - Surface wind speed over sea for the calculation of surface emissivity
 - Temperature and water-vapour profiles for cloud detection and CO₂-slicing
 - No conditioning of profile retrieval with NWP forecast

Properties of the Operational IASI L2 Processor (2/3)

- Processing is steered by configuration settings (80 configurable auxiliary data sets), which allows for optimisation of PPF
 - Most of the settings have been refined during commissioning, based on validation results
- Online quality control supports the choice of best processing options in case of partly unavailable IASI data or corrupt side information (data from other instruments or NWP forecast)
- A number of flags are generated steering through the processing and giving quality indicators; 42 flags are specified, which are part of the product, a sub-selection directly relevant for the user is disseminated with the product; an error covariance (or part of it) will be included in future

Properties of the Operational IASI L2 Processor (3/3)

- Different retrieval methods are implemented so that the best configuration can be chosen based on validation results and operational constraints:
 - EOF regression retrieval for temperature and moisture retrieval, surface temperature, emissivity, and ozone columns
 - Artificial neural network retrieval using a selection of spectral samples for trace gas retrievals
 - Iterative retrieval using a selection of spectral samples for temperature and humidity profiles as well as surface and cloud parameters
- The retrieval can be configured to chose among the retrieval schemes or to combine them

Geophysical parameters retrieval: state vector to be derived

- The state vector to be retrieved consists of the following parameters
 - Temperature profile at high vertical resolution
 - Water vapour profile at high vertical resolution
 - Ozone columns in deep layers (0-6km, 0-12 km, 0-16 km, total column)
 - Land or sea surface temperature
 - Surface emissivity at 12 spectral positions
 - Columnar amounts of N₂O, CO, CH₄, CO₂
 - Cloud amount
 - Cloud top temperature and pressure
 - Cloud phase
- In case of clouds and elevated surface the state vector has to be modified
- The iterative retrieval provides error covariances, part of it is included in the product

Preprocessing

- Validation of incoming data
 - Examination of quality flags in IASI L1C, AMSU-A, MHS, AVHRR Scenes Analysis
 - Check of radiances against valid bounds
 - Check of geolocation against valid bounds
 - Check of NWP forecast against valid bounds and for completeness
- Mapping of AMSU-A, MHS, AVHRR, and NWP to IASI IFOV
- Extraction of land-sea mask and surface topography and mapping to IASI IFOV
- Bias correction of IASI radiances

EUM/MET/VWG/09/0195

Slide: 7

16/04/2009

- Correction for ISRF shift in case of inhomogeneous scenes
- Calculation of IPSF-weighted fractional cloud cover from AVHRR
- Calculation of IPSF-weighted surface and cloud top temperatures from AVHRR

Correction of systematic errors

ΔT_{B} (OBS–MOD) mean and stddev

- Retrieval, CO₂-slicing, and cloud detection use radiative transfer calculations as basis
- Prerequisite for the functionality of the retrieval is a good representativity of the measurements by simulated radiances
- Systematic errors:
 - Approxmations necessary for fast calculations
 - Insufficient knowledge of spectroscopic data
 - Erroneous input data
- Systematic fit of models to IASI measurements

Location and Geometry		IASI Spectrum Ra		diance Analysis			
	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	No Class
Color							
Coverage	80.75%	16.72%	0.00%	0.00%	2.53%	0.00%	0.00%
Gravity Y	-0.642	-0.822	0.000	0.000	-0.916	0.000	0.000
Gravity Z	0.666	0.379	0.000	0.000	0.306	0.000	0.000
Radiance_1	2.090	3.405	0.000	0.000	4.319	0.000	0.000
Radiance_2	2.377	4.818	0.000	0.000	6.409	0.000	0.000
Radiance_3a	0.082	0.181	0.000	0.000	0.242	0.000	0.000
Radiance_3b	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Radiance_4	0.001	0.001	0.000	0.000	0.001	0.000	0.000
Radiance_5	0.001	0.001	0.000	0.000	0.001	0.000	0.000

AVHRR Radiance Analysis inside IASI

Cloud processing: cloud detection

- AVHRR-based cloud detection using Scenes Analysis from AVHRR Level 1 processing
- Combined IASI / ATOVS cloud detection: 2 inter-channel regression methods
- IASI stand-alone cloud detection
 - Window-channel test based on calculated clear-sky radiance spectra
 - 2 IASI inter-channel regression tests
 - Horizontal coherence test
 - Thresholds on principal component scores
 - Window cross-correlation test
 - Threshold test for clouds over elevated polar regions
 - Threshold test for detection of dust storms

Cloud processing: cloud parameters retrieval

- Cloud fraction (CO₂-Slicing)
- Cloud top pressure and temperature (CO₂-Slicing)
- Cloud phase: examination of slope of window spectra

16/04/2009

Geophysical parameters retrieval (1/2)

- An EOF regression retrieval using 500 principal component scores representing the spectra of bands 1 and 2 for temperture and humidity retrieval, surface temeprature, land surface emissivity, and ozone columns
- An artificial neural network retrieval is based on a selection of IASI spectral samples and a guess temperature profile; the derived parameters are CO, CH₄, N₂O, CO₂
- An iterative maximum probability retrieval, based on the Levenberg-Marquardt iteration utilising 235 spectral samples
- Band 3 has been removed from temperature and humidity sounding
 - Insufficient capabilities to include solar radiation (too time consuming)
 - NLTE effects not modeled
 - Suffers from high noise compared to bands 1 and 2

Geophysical parameters retrieval (2/2)

- Iterative retrieval
 - Initialised with results from the first retrievals (EOF regression, ANN) and cloud parameters from CO₂-slicing
 - Background from climatology
 - Includes K-matrix version of RTIASI-4
- Different conditions require modification of state vector
 - Full state vector without cloud parameters in clear situations
 - Reduced state vector in case of elevated surface
 - Full state vector including cloud parameters in case of slightly cloudy conditions (< 20% cloud coverage)
 - Reduced state vector when cloud fraction exceeds 20%, retrieval only above cloud top
- Simultaneaous retrieval of all state vector elements
 - Operational contraints allow currently only for 5 iterations (non-convergence in some cases)

Flag collection (1/2)

- A collection of 42 flags is part of the product
- Very important information for the user
 - Which data, in which quality entered the product generation?
 - Which methods have been used and how was the product generated?
 - What is the product quality?
- Examination of the flags is mandatory in the utilisation of the product
 - Ignorance of the flags will lead to dissatisfaction of users

Flag collection (2/2)

- Validity and quality of the input data: 13 flags
- Information on cloud processing: 9 flags
- Information on day/night, sun-glint, land/sea: 3 flags
- Retrieval choice and settings: 8 flags
- Retrieval quality: 9 flags
- Definition of flags is given in
 - Annex D of the IASI L2 Product Generation Specification
 - Section 4.3.3 of the IASI L2 Products Guide

Operational status

- IASI L2 PPF Version 4.3.2 runs on GS-1, as described in IASI L2 PGS, and generates products for NRT dissemination
- Products are broken down in 5 IASI L2 BUFR products
 - Atmospheric temperature
 - Atmospheric water vapour
 - Surface temperature
 - Cloud parameters
 - Atmospheric ozone
 - Trace gases
 - Surface emissivity

TWT, operational TWT, operational TWT, operational CLP, operational OZO, pre-operational TRG, pre-operational: CO not disseminated yet

- All products are available from UMARF in non-NRT mode
 - Associated error covariances are only available from UMARF

Validation status (1/2)

• Temperature and water vapour profiles

- ECMWF analyses
- Radiosonde measurements from validation campaigns
- Sea surface temperature
 - AATSR@Envisat

• Land surface temperature:

- MODIS@Terra
- LSA SAF radiometric surface temperature measurements in Gobabeb
- Ozone
 - GOME-2
 - Ozone sonde measurements
- Carbon monoxide
 - MOPITT@Terra

Validation status (2/2)

- Cloud detection and phase
 - Visual analysis of AVHRR imagery

Cloud fraction

- Visual analysis of AVHRR imagery
- Cloud observations from validation campaign

Cloud top pressure

Cloud radar measurements from validation campaign

Nitrous oxide

Chemical transport model

Carbon dioxide

No validation yet

Methane

No validation yet

Temperature at 500 hPa: 16 October 2007

220 230 240 250 260 270

EUMETSAT

Validation examples: atmospheric temperature

Specific Humidity at 700 hPa: 16 October 2007

Validation examples: atmospheric water vapour

Validation examples: cloud fraction

EUMETSAT

Validation examples: cloud top pressure

EUMETSAT

Validation examples: sea surface temperature

16/04/2009 Slide: 25

Validation examples: land surface temperature

Validation examples: land surface temperature

-20 % error

-30 30 % error

Carbon monoxide: comparison IASI - MOPITT 25 - 31 August 2008

Averaged MOPITT total CO :: 25-31aug08 Day

Averaged C0 25–81aug08 :: Night – IASI L2 PPF

Averaged MOPITT total CO :: 25-31aug08 Night

Validation example: carbon monoxide Comparison against MOPITT

ECMWF - IASI L2 assimilation experiments

Evaluation of the impact of IASI level-2 products (temperature and humidity retrievals) and comparison to level-1 radiance assimilation

- Estimation of level-2 product error covariance statistics from product-model departures
- Bias-correction defined on 10-degree latitude/longitude grid.
- Baseline (conventional + AMV)
- Study period: July-August 2008

Temperature and humidity biases and standard deviations from first guess (IASI and radiosonde)

Temperature biases and error stdev-s

Specific humidity biases and error stdev-s

Usage of vertical error correlations mandatory for IASI L2

IASI L2: T

Radiosonde: T

0.8

0.6

0.4

0.2

-0.2

-0.4

0.6

0.4

0.2

-0.2

-0.4

1000hPa

0

Radiosonde: q

Impact of accounting for vertical for vertic

Geopotential height forecast skill (Southern hemisphere)

FORECAST VERIFICATION IASI L1 500 hPa GEOPOTENTIAL ANOMALY CORRELATION FORECAST IASI L2 AREA=S.HEM TIME=00 MEAN OVER 29 CASES BASE DATE1=20080712/__DATE2=20080712/__DATE3=20080712/_ ×100 95 90 85 **Baseline** 80 Level-2 75 Level-1 70 65 60 5 6 **Forecast Day** MAGICS 6.12 mitigatel - thig The Dec 18 11118:59 2009 Verify SDODDW CICMWI

500 hPa

200 hPa

Temperature forecast skill

ence of temperature biases

Impact of tuning temperature biases

TEMP-T N.PolarC

used T

North-Pole area after tuning

background departure o-b(ref) background departure o-b analysis departure o-a(ref) analysis departure o-a

.....

.....

Summary of IASI L2 OSE results

- Baseline was a weak observation system with conventional and AMV data only
- Large biases in the IASI L2 data were handled with a flat brute-force bias correction on a 10° longitude/latitude grid
- Significant positive impact is obtained for temperature in the Southern hemisphere that lasts into the medium range
- Significant negative impact is obtained near the North Pole that weakens with forecast range and disappears after day 3
- Significant positive impact is obtained for relative humidity, lasting up to 3-4 days, especially in the Southern hemisphere
- Assimilation of IASI L2 data performs less well than assimilation of IASI L1 data
- Exercise is to be repeated with data from upgraded IASI L2 PPF

Ongoing work

- Monitoring against ECMWF forecast has been set up for identifying peculiarities
 - Detection of scan-angle dependent biases in temperature profiles
- Removal of cloud tests which are redundant or underperforming
- Handling of CO₂ slicing in case of multiple cloud formations
 - Inclusion of information from AVHRR radiance analysis
- Contribution to retrieval inter-comparison exercise coordinated by Met Office
 - Focus on learning lessons to improve water-vapour retrieval

