Information content of IASI for constituent estimation

LATM

C. Clerbaux, and the LATMOS IASI Team, Paris P.-F. Coheur, and the ULB IASI Team, BXL

Outine

- Trace gas measurements with IASI
- Operational applications

IASI advantages for monitoring trace gases

• 12 km pixel x 4 @ nadir.

• 120 spectra along the swath (\pm 48.3° Scan \rightarrow 2400 km), each 50 km along the trace

Small ground pixel size

Global coverage twice daily (morning and evening orbits)

1995	2000	:	2005 2007	
IMG/ADEOS	MOPITT/TERRA	AIRS/AQUA	TES/AURA	
CO, O ₃ , HNO ₃ profiles, HDO few days of measurements ligh spectral resolution Nadir TIR satellite sounding	CO profiles (2 trop. Inf) Global coverage 3 days Atm. Chemistry	CO, O ₃ , CO ₂ , CH ₄ , H ₂ O, volcanic SO ₂ Global coverage daily Coarse spectral res. NWP	CO, O3 profiles (2 trop. Inf) HDO, NH_3 , CH_3OH Global coverage 14 days High Spectral resolution Atm. Chemistry	

→ Tropospheric sensitivity with, in the best cases, vertical profile information for a series of species (mainly with long to medium lifetimes)
 → Surface sensitivity strongly dependent of thermal contrast→ Can we monitor / quantify sources?

IASI/METOP

Reception and data processing set-up

SO₂, NH₃, ...

CO,O₃,CH₄

OEM

IASI observations: radiances

Thermal contrast – 1 month average (May 2008)

Species	Vertical Res. (DOFS)	Error (%)	Comment	References
Long-lived species (lifetime > 10 years)				
CO ₂	<1	NA	Strong absorber	Crevoisier et al., IASI ACP/ACPD
N ₂ O	<1	NA	Strong absorber	Ricaud et al., IASI ACP/ACPD
CFC-11	<1	NA	Weak absorber	
CFC-12	<1	NA	Weak absorber	
HCFC-22	NA	NA	Weak absorber	
OCS	<1	NA	Weak absorber	Shepard et al., IASI ACP/ACPD

Average 1°x1°, 10 days, 18-28 August 2008

CO, O₃, HNO₃, SO₂ in near real time

Clerbaux et al, ACP IASI Special Issue, 2009

Species	Vertical Res. (DOFS)	Error (%)	Comment	References
Medium-lived species (lifetime a few weeks to a few years)				
H ₂ O	5-6	15% (0-20 km)	Dominant absorber	Herbin et al., IASI ACP/ACPD
HDO	3-4	30% (0-20 km)	Strong absorber + Absorption in the backscattered solar radiation	Herbin et al., IASI ACP/ACPD
H ₂ ¹⁸ O	3-4	NA	Strong absorber	Herbin et al., IASI ACP/ACPD
CH4	~1	<2% col. tot.	Strong absorber Absorption in the backscattered solar radiation	Razavi et al, IASI ACP/ACPD Crevoisier et al., IASI ACP/ACPD
O ₃	3-4	30% (0-6 km) 3% col. tot.	Strong absorber with large stratospheric contamination	Eremenko et al., 2008 Boynard et al., IASI ACP/ACPD Keim et al., IASI ACP/ACPD Massart et al., IASI ACP/ACPD Feis et al., IASI ACP/ACPD
со	1-2	10%		George et al., IASI ACP/ACPD Turquety et al., IASI ACP/ACPD
HNO ₃	~1	15% Col. tot.	Weak absorber with large stratospheric contamination	Wespes et al., IASI ACP/ACPD

Species	Vertical Res. (DOFS)	Error (%)	Comment	References
Short-lived species (lifetime a few hours to a few days)				
NH ₃		NA	Detected in fires and over agricultural regions	Coheur et al., IASI ACP/ACPD Clarisse et al., 2009
СНЗСООН		NA	Detected in fires	Coheur et al., IASI ACP/ACPD
НСООН		NA	Detected in fires	Coheur et al., IASI ACP/ACPD
C ₂ H ₄		NA	Detected in fires	Coheur et al., IASI ACP/ACPD
SO ₂ volcans		NA	Detected in volcanic plumes for concentrations above 2 DU	Clarisse et al., IASI ACP/ACPD
Aerosols				
Dust (sand), volcanic ash, ice clouds	~1	NA		

IASI/METOP – Operational applications (GMES)

Pollution forecast

Ozone peaks NH₃ sources

Fire detection

Volcanic plumes

Aviation threat

Long-range pollution

IASI/METOP – Operational applications (GMES)

Pollution forecast

Ozone peaks NH₃ sources

Ozone total column

Ozone profile

Boynard et al, ACP IASI Special Issue, 2009

Ozone (O_3) - pollution peaks, South of Europe, 22-26 July 2007

Relevance of atmospheric ammonia

- Dominant role in the nitrogen cycle (along with NOx)
- Formation of fine particulate matter (\rightarrow Air Quality)
- Acidification and eutrophication of the ecosystem

Sources

- Agriculture (66%): fertilizers, livestock waist, crops
- Natural sources (21%): oceans, soils, vegetation
- Biomass burning (13%)

Growing population goes together with an ever increasing demand of fertilizers, leading only to increasing ammonia emissions

Lack of observations and inventories Estimates of global annual ammonia emissions have errors over 50%

2000 distribution from TM5

NH₃ from IASI: 2008 average

NH₃ from IASI: 2008 average

Mapping from local to global scale → 28 emission hotspots identified

Cathy Clerbaux, ECMWF, May 2009

NH₃ from IASI: 2008 average

Comparison with models

NH₃ from IASI (St Joaquin) Spatial and temporal sampling

Clarisse et al., in preparation

2008 yearly average

Build up in early spring Stays high throughout Spring-summer Weakening in October

IASI/METOP – Operational applications (GMES)

Fire detection

Long-range pollution

Carbon monoxide

CO, comparison with MOPITT, AIRS, TES, August 2008

Greek fires, August 2007

Turquety et al, ACP IASI Special Issue, 2009 Coheur et al., ACP IASI Special Issue, 2009

IASI/METOP – Operational applications (GMES)

Volcanic plumes

Aviation threat

Sulfur dioxyde (SO₂) – volcano plumes Jebel at-Tair (Red sea), 1 October 2007

Applications Tracking transport and Chemistry

Etna July 2008

LATN

Applications Tracking transport and Chemistry

Kasatochi August 2008 Plume's altitude ~12-16 km

Monitoring volcanic plumes

Spectral signatures

Aerosols: ASH

Applications

Operational alert systems: Identification and tracking of volcanic plumes

http://cpm-ws4.ulb.ac.be/Alerts/

Provides alerts from BT differences in SO2-v3 on BUFR basis (also e-mail system) Useful for eruptions with emissions above the boundary layer Extremely stable, without false alerts to now

Redoubt eruption from March 27

Location > 64.088950 -135.559800 Value > 14.005466 K #Points > 57 File > iasi_20090324_192059_metopa_12603_eps_o.l1_bufr

135 alerts sent for period of Redoubt (March-April 2008)

Further developments

- Include information on plume's altitude and aerosol content
- Implementing processing at Toulouse VAAC and at BIRA-IASB with ESA support (annex to SAVAA project)

Applications Tracking transport and Chemistry

Redoubt 23.03-04.04 2009

Applications

Tracking transport and Chemistry

Redoubt April 2009

Applications

Tracking transport and Chemistry

Redoubt April 2009

Conclusions

IASI measures a dozen of species with a range of lifetimes, *routinely* and *globally* twice a day

Long-lived species (years) → Climate + CO, O₃ (months) → Chemistry, AQ, Transport

Short-lived species + aerosols (days) → Chemistry, emission inventories

Operational applications starting (assimilation of CO; volcanic monitoring)
New insights on emissions and chemistry (e.g. NH₃). Applicable to other species?

IASI ACP Special Issue

The IASI instrument onboard the METOP satellite: first results *Editor(s): A. Richter and T. Wagner* 26 papers submitted, 23 on line (ACPD).

http://www.atmos-chem-phys-discuss.net/special_issue82.html

