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General context and objective

An ensemble 3D-Var system was developed for the European project
ENSEMBLES to provide multiple ocean analyses for estimating the
uncertainty in ocean initial conditions for seasonal forecasts.

An ensemble data assimilation system provides �ow-dependent
information on analysis and background error.

I This information can be exploited to improve the estimate of the
background-error covariance matrix (B) on each assimilation cycle.

I In the ENSEMBLES experiments, we made no attempt to use the
ensemble to update B.

The objective here is explore the possibility of using the ensemble
3D-Var system to improve B.
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How to use the ensemble information?

Construct a low-rank approximation to B directly from the sample
covariance of the ensemble of model forecast states.
(Houtekammer and Mitchell 2001; Keppenne and Reinecker 2002; Ott et al. 2004;
Buehner and Charron 2007; Oke et al. 2007).

I Covariance localization is necessary to minimize spurious e�ects due to
sampling error.

- or -

Use the ensemble indirectly to de�ne parameters of a (localized)
covariance model in a full-rank (operator) representation of B.
(Fisher 2003; �agar et al. 2005; Belo Pereira and Berre 2006; Berre et al. 2006;

Küçükkaraca and Fisher 2006).

I A �exible covariance model (inhomogeneous, anisotropic) is required to
make best use of the ensemble information.
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Objective of this study

Here, we adopt the covariance model approach.

In particular, we investigate the potential of an ensemble of ocean
states to provide useful �ow-dependent estimates of the
background-error variances in the 3D-Var system.

This approach will be compared with a simpler approach for
incorporating (weak) �ow dependence in the variances, based on a
parameterization in terms of the background state.

This study is a �rst step towards making more comprehensive use of an
ensemble for specifying additional parameters of the covariance model.
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Basic features of the assimilation system

The ocean model is a global 2o con�guration of OPA8.2 (Madec et al.

1998).

The surface forcing �elds are derived from ERA40 (Uppala et al.

2005).

The assimilation method is a multivariate 3D-Var version of the
OPAVAR system (Weaver et al. 2005).

First-Guess at Appropriate Time (FGAT) and Incremental Analysis
Updates (IAU) are employed.

The data are quality-controlled temperature and salinity pro�les from
ENSEMBLES (EN3) data-base (Ingleby and Huddleston 2007).
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The 3D-Var FGAT cost function

J =
1

2
δwTB−1(w) δw +

1

2
(Hδw − d)TR−1(Hδw − d)

where

d =


d0
...
di
...
dN

 =


yo
0
−H0w

b(t0)
...

yoi −Hiw
b(ti )

...

yoN −HNw
b(tN)

 and H =


H0

...
Hi

...
HN

 .

δw = (δT , δS)T is the vector of temperature and salinity increments.

yoi = (T o
i , S

o
i )T is the vector of temperature and salinity observations.

Increments for sea-surface height and velocity are obtained using
balance constraints applied to the analysis increment δwa.
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The background-error covariance matrix

B(w) = K(w) D
1/2
(ŵ) F(ŵ)F

T
(ŵ) D

1/2
(ŵ)K

T
(w)

where

F(ŵ) =

(
FTT 0
0 FSUSU

)
, D

1/2
(ŵ) =

(
D

1/2
T

0

0 D
1/2
SU

)
, K(w) =

(
I 0

KST I

)

ŵ = (T , SU)T where SU corresponds to �unbalanced� salinity.

K(w) is a multivariate balance operator: ŵ 7→ w.

F(ŵ)F
T
(ŵ) is a quasi-Gaussian 3D univariate correlation operator,

modelled using a di�usion operator.

D(ŵ) is a variance matrix (for ŵ) whose estimation is the focus of this
study.
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The ensemble 3D-Var cycling procedure
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The background-error variance matrix (Dc) used for the analysis on
cycle c is estimated from the sample variance matrix computed from
the ensemble of background states (xb

l ,c(t0)) at the start of cycle c .

In our set-up, xb
l ,c(t0) = xa

l ,c−1(tN).

ECMWF Workshop on Diagnostics of data assimilation system performance, 15-17 June 2009



Ensemble formulation of σb

Estimate σb from the di�erence between background states of successive
ensemble members, l = 0, . . . , L− 1:

D(ŵ) = diag
{

(σbT )2, (σbSU )2
}

= diag

{
1

2(L−1)

L−1∑
l=0

[
K−1(w)

(
wb
l (t0)−wb

l+1
(t0)
)]

×
[
K−1(w)

(
wb
l (t0)−wb

l+1
(t0)
)]T}

where wb
L(t0) = wb

0
(t0).
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Key features of the ensemble-generation strategy

A 9-member ensemble.

The perturbed input parameters:
I the surface forcing �elds (heat �ux, fresh-water �ux, wind-stress);
I the temperature and salinity observations;
I the background state;
I model error is neglected.

Construction of the perturbations:
I the forcing perturbations are derived from di�erences between di�erent

forcing analysis products (Balmaseda et al. 2008);
I the observation perturbations are drawn from a Gaussian pdf with

covariance matrix R;
I the background state is perturbed implicity via the cycling procedure;

Reduction of sampling error:
I A 90-day (9-cycle) sliding window is used, giving an e�ective ensemble

size of 81 on each cycle for estimating σb.
I Intraseasonal variability in σb is thus �ltered out.
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The numerical experiments

The experimental design follows the common reanalysis procedures
used in the ENSEMBLES and ENACT projects (Davey et al. 2006).

The experiments are performed for the 9-year period from 1 January
1993 to 31 December 2001.

A 10-day assimilation cycle is used.

The experiments:

I CTL : no data assimilation.
I B1R1 : parameterized σb, and σo de�ned using globally-averaged

estimates from Ingleby and Huddleston (2007).
I B1R2 : parameterized σb, and σo estimated from Fu et al. method.
I B2R2 : ensemble σb, and σo estimated from Fu et al. method.

Results will be displayed for temperature only and for the global ocean
(results for salinity and in di�erent regions are qualitatively similar).
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Parameterizing σb in terms of ∂T b/∂z makes some sense

(from Weaver et al. 2003)

3D-Var

4D-Var
tn =30 days

|∂T b/∂z | × δz
δz = 10 m

Pb(tn) = B in 3D-Var FGAT

Pb(tn) = M(t0, tn)BM(t0, tn)T in 4D-Var (cf. EKF)
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σo estimated using the Fu et al. method

Example of temperature σo at 50 m
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The average innovation �weights� for temperature
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• Neglecting correlations, wT is the average weight for an innovation.

• Both σbT and σoT have been computed at observation points, and

averaged over the 1994-2000 period and the global domain.
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Analysis residual and innovation statistics for temperature
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• r = d−Hδwa (residual) and d = yo −Hwb (innovation).

• z indicates spatial (global) and temporal (1994-2000) average.

• Mean bias in CTL is reduced substantially in all assimilation expts.
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Analysis residual and innovation statistics for temperature
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• r = d−Hδwa (residual) and d = yo −Hwb (innovation).

• sd(z) =

√
(z− z)2

• All assimilation expts. improve the �t to the observed variability.

• The �error growth� in the 10-day forecast is smallest for B2R2.
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An �e�ciency� index
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• E = 10-day forecast error from CTL � 10-day forecast error from assim.
�work done� by assimilation method to reduce forecast error

• E > 0 (E < 0) implies assimilation is bene�cial (detrimental).

• E increases (decreases) if d or δwa decreases (increases).
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Speci�ed versus diagnosed σb and σo for temperature in B2R2

(method of Desroziers et al. 2005)
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• If B and R are good estimates of the true background- and

observation-error covariance matrices then

E [d (Hδwa)T] ≈ HB(w)H
T

E [d (d−Hδwa)T] ≈ R

• Here, σbT is underestimated, and σoT is overestimated.
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Speci�ed versus diagnosed σb and σo for temperature in B1R2

(method of Desroziers et al. 2005)
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• σbT is also underestimated (to a lesser extent than in B2R2).

• σoT is also overestimated (to a greater extent than in B2R2).
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Temporal variability of the ensemble and assimilation statistics

Experiment B2R2
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• spread{Hiw
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• Spread of the analysis < spread of the background.

• No evidence of ensemble collapse.

• Spread(Hiw
a,b) is approximately a factor 10 smaller than sd(ri ), sd(di ).
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Comparisons with (independent) TAO current-meter data

Example from the eastern Paci�c (110◦W)
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• B2R2 outperforms B1R2 (and B1R1) at all moorings.

• B2R2 outperforms CTL in the central and eastern Paci�c,

but slightly worse in the western Paci�c.
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Conclusions (1)

Both the parameterized and ensemble σb formulations produce a
signi�cant reduction in the rms of the innovations (compared to the
control), with the parameterized σb slightly better above 150 m.

Evidence that the ensemble σb analyses are better �balanced�.
I Reduced error growth between cycles.
I Smaller analysis increments.
I Closer to independent data (sea-level anomalies from T/P and

current-meter data from TAO).

Desroziers et al. statistics suggest that the ensemble σb are
underestimated.

I The parameterized σb are also underestimated but to a lesser extent.

The apparent underestimation of the ensemble spread points to the
need to improve the ensemble generation strategy.

I Simple in�ation techniques did not give satisfactory results.
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The numerical experiments

An incremental 4D-Var version of the OPAVAR system.

Global 2o con�guration.

Same resolution in the outer and inner loops.

Tangent-linear model with simpli�ed vertical mixing and simpli�ed
isopycnal di�usion.

Assimilation of temperature and salinity pro�les.

A single 10-day cycle (Jan. 1-10, 1993).

No. of control variables ∼ 1.7× 106; no. of observations ∼ 1.4× 105.

3 outer iterations with 10 inner iterations per outer iteration.

Inner-loop minimization done using a close variant of the CONGRAD
routine (Fisher 1998).

CONGRAD is a Lanczos implementation of a B-preconditioned
conjugate gradient algorithm.
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The incremental 4D-Var cost function

J =
1

2
δwTB−1(w) δw +

1

2
(Hδw − d)TR−1(Hδw − d)

where

d =


d0
...
di
...
dN

 =


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b(t0)
...
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b(ti )

...
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 and H =


H0

...
HiM(t0, ti )

...
HNM(t0, tN)

 .

δw = (δT , δS , δη, δu, δv)T is the vector of temperature, salinity, SSH
and velocity increments.

yoi = (T o
i , S

o
i )T is the vector of temperatpure and salinity observations.

Direct initialization (not IAU) and outer iterations.
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Monitoring the �jumps� on outer iterations (1)
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• The jumps on outer iterations give an indication of the accuracy

of the linear approximation.

• Largest jump between 1st and 2nd outer iterations (rel. error ∼ 4.5%).
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Monitoring the �jumps� on outer iterations (2)

Comparison of 4D-PSAS and 4D-Var in a �toy� problem
(from Gratton and Tshimanga (2009), submitted to QJRMS)
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• The �jumps� can be particularly problematic in PSAS if the inner-loop

minimization is stopped before full convergence.
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Convergence criterion for the inner loop

Euclidean gradient norm
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• The Euclidean gradient norm is not necessarily a good measure of

convergence of the CG minimization.

• Convergence diagnostics that decrease monotonically are preferable.

. Relative reduction in quadratic cost.

. Gradient norm based on the inverse Hessian metric.
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Approximate Hessian eigenvalues/vectors from the Lanczos algorithm

Approx. eigenvalues (Ritz values) Backward error ||∆A||/||A||
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• Here the Ritz values are similar between outer iterations k = 1, 2 and 3.
. Ritz pairs from k < K can be used to precondition iterations k ≥ K .

• The largest Ritz value is the most accurate (error∼10−3�10−5).
. Can be used to provide a good estimate of the condition number.

• Most of the other Ritz values are much less accurate (error∼10−1�10−2).
. Caution when using these Ritz pairs in spectral preconditioners.
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The spectral limited-memory preconditioner (Fisher 1998)
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• Inaccurate eigenpairs (θi , zi ) (Ritz pairs) used in the spectral LMP
can be worse than no preconditioning at all.
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The Ritz limited-memory preconditioner (Tshimanga et al. 2008)
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• A �good� preconditioner for (A-conjugate) Ritz vectors as well as
exact eigenvectors (a �stablized� spectral LMP).

• A more accurate formula (with Ritz vectors) for computing analysis
self-sensitivities (Cardinali et al. 2004).
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Monitoring the behaviour of the non-quadratic cost function
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• In incremental 4D-Var the value of the non-quadratic cost function
is only computed at the outer-loop end-points.

• Here they are diagnosed at intermediate points (expensive!).

• Divergence in the non-quadratic cost occurs after 6 inner iterations
(on the 3rd outer loop).
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Conclusions (2)

The inner-loop minimization requires an appropriate stopping criterion
(in 3D-Var FGAT as well as 4D-Var).

I The Euclidean gradient norm is not a robust measure of convergence.
I Beware of �jumps� and divergence on the outer loop (see also

Trémolet 2007).

For a �xed number of outer iterations, the optimal number of inner
iterations (per outer iteration) can be diagnosed a priori.

I Requires multiple cost function evaluations on the outer-loop
→ Very expensive!

I Periodic tuning of the number of inner iterations would be more
practical.

I Results will depend on the preconditioner as well as the characteristics
of the problem.
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