
ECMWF Workshop on 
Diagnostics of data assimilation system performance

Convergence and Stability of 
Estimated Error Variances derived from 

Assimilation Residuals 
in Observation Space

Air Quality Research Division,
Atmospheric Science & Technology Directorate, 

Environment Canada, Canada

June 16, 2008

Richard Ménard
Yan Yang

Yves Rochon



6/16/2009 ECMWF Workshop on Diagnostics of data 
assimilation performance, June 15-17 2009

Page 2

• Environment Canada NWP
+ online stratospheric chemistry

– BIRA  57 advected species
– LINOZ (aka Cariolle)
– LINOZ2 ( O3, N2O, CH4, 

tendecies + parametrization of 
heterogeneous chem

– FASTOC (High Dimensional 
Model Representation)

• (advected) ozone and water vapor 
radiation interaction

• 3D and 4DVar assimilation with 
possibilities of cross dynamics-
chemistry coupling with balanced 
operators

• Extending the chemistry into the 
troposphere

Context
TOMS 

GEM-BACH no chem assim

30 September 2003
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• Assimilation of all meteorological data + limb sounding observations 
of MIPAS/ENVISAT (T, H2O, O3, CH4, HNO3, H2O, N2O, ClONO2)

GOAL
• Online estimation of observation and background error variance as a 

function of height (global mean or three regions, height)       
using O-F, O-A, A-F statistics
– no chemical-radiation interaction, no coupling between 

meteorological and chemical error statistics



6/16/2009 ECMWF Workshop on Diagnostics of data 
assimilation performance, June 15-17 2009

Page 4

Convergence – scalar case
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where RHBH  TTFOFO ))(( is obtained from assimilation residuals
and overbar denotes prescribed error covariances

A - Iteration on observation error

i)- Correctly prescribed forecast error variance 
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Convergence – scalar case



6/16/2009 ECMWF Workshop on Diagnostics of data 
assimilation performance, June 15-17 2009

Page 6

1
1

1)( 22

2







  KG
fo

f








and so for this case we get

the scheme is always convergent and converges to the true value, 1

1

ii)- Incorrectly prescribed forecast error variance 
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the mapping is now different

Convergence – scalar case
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The fixed-point is   
2

22

111
o

ff















that is not the true observation error value.
• If forecast error variance is underestimated, obs error is overestimated
• If forecast error variance is overestimated, obs error is underestimated
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Will not converge if: 2222
foff  

In practice the estimated forecast error variance will never be larger than
the innovation error variance, so for all practical cases the scheme 
converges.

Convergence – scalar case
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B - Iteration on forecast error
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i)- Correctly prescribed observation error variance 
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converges to the true forecast error variance 1

ii)- Incorrectly prescribed observation error variance 
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for most practical cases will converge, but to the wrong value 
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If observation error variance is underestimated, 
→ forecast error is overestimated
if observation error variance is overestimated, 
→ forecast error is underestimated

Convergence – scalar case
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An optimal KF has a lagged-innovation covariance equal to zero (Daley 1992)
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Lagged-innovation covariance

for a very small time step IIM  kk t

T
n

Tk
k HBHHBHC ˆ

1 

The mean lagged-innovation in the n-th assimilation cycle 

Even if          converges, it may not converge to the truth,  and then the 
the lagged-innovation covariance converges to a non zero value

nB̂
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Remark

A - Iteration on observation error variance
• If forecast error variance is underestimated, obs error is overestimated
• If forecast error variance is overestimated, obs error is underestimated

B - Iteration on forecast error variance

If observation error variance is underestimated, 
→ forecast error is overestimated
if observation error variance is overestimated, 
→ forecast error is underestimated

Are we getting anywhere if we iterate both, observation and forecast errors ?
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Stability of the scheme

• Cycling the assimilation
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Assimilation (n-1)
new set 

An-1
Fn-1

reconduct an assimilation over a period of a month with new error stats

• All the statistics O-A, O-F, A-F are derived from assimilation residuals, 
and iterated on the whole assimilation cycle, so the
O-A, O-F, A-F are diagnostics of the assimilation system

• With this scheme, we also have a testbed for online estimation of error statistics
(in perpertual mode)
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Iteration on observation error variance

AMSU-a AMSU-b

Error variance (n) / reference error variance
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Iteration on observation error variance
Error variance (n) / reference error variance
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AMSU-a
Before any iteration
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AMSU-a
one iteration on observation error
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AMSU-a
one iteration on observation and background error 
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RAOBS T
Before any iteration
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RAOBS T
one iteration on observation error
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RAOBS T
then one iteration on background error
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RAOBS T
one iteration on observation and background error
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CH4 assimilation
combined iterations of observation and background error
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CH4 assimilation
combined iterations of observation and background error
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diff with HALOE

CH4 assimilation
combined iterations of observation and background error

first iteration

second iteration

third iteration

fourth iteration
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Iteration on both observation and background
error variances

Consider the case of tuning together α and β in each iteration  
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The mapping                                   is in fact ill-defined, since the Jacobian
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Iteration on both observation and background
error variances

In fact the full system

is “rank deficient” !
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The system can be rewritten as

…………………………………. (1)
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Iteration on both observation and background
error variances

Since
OPA 

then
111 )(   POIOPOAO

So the first equation of the system (1)
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The scalar equations applies as well for the
spectral variances

Case where the background error covariance is spatially correlated
and the observation error covariance is spatially uncorrelated
Assume an homogeneous B in a 1D periodic domain with observations 
at each grid points,  H = I .  
We can write  the Fourier transform as a matrix F, and its inverse as FT

Then in the system

All matrices can be simultaneously diagonalized giving a N systems 
of scalar (variance) equations (one for each wavenumber k)
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Summary and Conclusions

• The convergence of the Desrosiers’ et al (2005) scheme has been
investigated in the context of cycling assimilation

• Iteration on either observation error variance or background error variance
generally converges, but will converge to an overestimate if the counterpart
in underestimated, and vice versa

• Iteration on both observation and background error variance is in principle
non convergent because the system of equation is rank deficient – the
same information is contained in the O-A and A-F equations

• Consideration about the  correlation length scales (different for obs
and background) seems not to influence the converge as shown by a  
spectral analysis on a simplified system

• Divergence of the scheme is clearly demonstrated in the case of assimilation
of a long-lived specie from a single instrument, but is unclear for meteorological
variables, perhaps because of multivariate coupling and multiple source of
observations that may restrain the feedback in assimilation cycles
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Thank you
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CH4
1.0mb 1.6mb

3.5mb

10.0mb

63.1mb

6.3mb

25.2mb

100.0mb
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Tuning in alternance –CH4


