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General formalism

 Statistical linear estimation :

xa  = xb + x = xb + K d = xb + BHT (HBHT+R)-1 d, 

with d = yo – H (xb ), innovation, K, gain matrix,

 B et R, covariances of background and observation errors,

 Solution of the variational problem

J(x) = xT B-1 x + (d-H x)T R-1 (d-H x)
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Non-linear formulation

 Incremental formulation (Courtier et al, 1994) : a strategy for 
minimizing the original non-linear cost-function:

J(x) = (x - xb)T B-1 (x - xb) + (yo-H (x))T R-1 (yo-H (x))

 Even in such a (slightly) non-linear problem, analysis, background 
and observation errors (or perturbations) are linked:

 a  = (I – KH) b + K o , with

 a = xa – xt

 b = xb – xt

 o = yo – H (xt)
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Geometrical interpretation of analysis

d = yo – H (xb)

Scalar product:

<’> = E[’T]

<ad> = E[a dT] = 0:

 a and d are orthogonal
 or, in other words, there is no 
projection of a on d

yo

a

o

xt xb 

xa

d

b
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Lagged innovation covariance

 Kalman Filter sequence:

dn = yo
n – Hn(xf

n)
xa

n = xf
n + Kn dn

xf
n+1 = Mn (xa

n)

dn+1 = yo
n+1 – Hn+1(xf

n+1)
…

 The lagged innovations dn and dn+1 should be decorrelated.
(Dee, 1983; Daley, 1992)

 Consequence of estimation error and innovation decorrelation.

 Translates into xn ( xn+1 )T = 0.
(Chapnik, 2006)
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Lagged increment covariance

(from Chapnik, 2006)
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A posteriori « Jmin » diagnostics

 We should have
E[J(xa) ] = p,

with p = total number of observations.

(Bennett et al, 1993)
 More precisely

E[Ji(xa) ] = pi – Tr(Si
-1/2  i A  i

T Si
-1/2 ),

pi : number of pieces of information (xb or yo) associated with Ji,

Si ,  i : associated error cov. matrix and « observation » operator. 

(Talagrand, 1999) 
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Particular cases
 Complete background term:

 i = In,
Si = B,

E[Jb(xa) ] = n - Tr(B-1/2 In A In
T B-1/2 )

= Tr(K H)
 Complete observation term:

 i = H,
Si= R,

E[Jo(xa) ] = p – Tr(R-1/2 HA HT R-1/2 )
= p - Tr(H K)

 Subpart of obs. term:
 i = Hi,
Si= Ri,

E[Jo
i (xa) ] = pi – Tr(Ri

-1/2 Hi A Hi
T Ri

-1/2 )
= pi –Tr(Hi Ki),

with Hi, Ki the restrictions of H, K to subset i.
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Computation of Tr(Hi Ki ) in a variational scheme

 K unknown, but relation between errors (or perturbations) still holds:
a  = (I – KH) b + K o

 For observation subset i:
Hi a  = Hi (I – KH) b + Hi K o

= Hi (I – KH) b + Hi j Kj o
j

 Linear regression:
Hi Ki = cov(Hi a, o

i ) / cov(o
i , o

i )
= cov(Hi a, o

i ) / Ri

 Or:
Tr(Hi Ki ) = o

i
T Ri

-1 Hi a

(Desroziers and Ivanov, 2001)
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Computation from an ensemble of 
perturbed assimilations

 Ensemble assimilation : simulation of the joint evolution of 
analysis, background and observation errors.

 E[Jo
i (xa) ] = Tr(Hi Ki ) are sub-products of an ensemble

of perturbed analyses.

(Desroziers et al, 2009)

(from Ehrendorfer, 2006)



15/30

Application : optimization of R

(Chapnik, et al, 2004; Buehner, 2005; Desroziers et al, 2009)

Normalization of Ri :

so
i Ri

Coef. so
i diagnosed with

so
i = E[Jo

i(xa)]/(E[Jo
i(xa)])opt.

Normalization coefficients of o
i in the French Arpège 4D-Var
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Application : normalization of B

 Normalization of B : sb B.

 Coefficient sb diagnosed with sb = E[Jb(xa)]/(E[Jb(xa)])opt.

 (E[Jb(xa)])opt given by (E[Jb(xa)])opt = Tr(HK) = i Tr(Hi Ki).

 Allows the global inflation of background error variances given by 
an ensemble of perturbed assimilations.
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Link with different measures
of the impact of independent observations

 A-1 = B-1 + i Hi
T Ri

-1 Hi A-1 = background « precision »
+ obs. « precisions »

 In = A B-1 + i A Hi
T Ri

-1 Hi In = background ponderation
= (In-KH) + i Ki Hi                                         + obs. ponderations

 n  = Tr(In-KH) + i Tr(Ki Hi ) n = DFS background
+ DFS observations

 B = A + i A Hi
T Ri

-1 Hi B bg error cov. = res. error cov. 
= A + i Ki Hi B + explained error cov.

DFS: Degrees of Freedom for Signal : Information content.

(Cardinali, 2004)
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Degrees of Freedom for Signal

Information content of observations in the French Arpège 4D-Var
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Diagnostics in observation space

b

d = yo – H (xb)

doa = yo – H (xa)

dab = H (xa) – H (xb)

E[doa dT]    = R

E[dab dT]    = HBHT

<’> = E[’T]

yo

a

o

xt xb 

xa

d

doa

dab

(Desroziers et al, 2005)
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Practical implementation

 For any subset i with pi observations, simply compute

(o
i)2 = j=1,pi (yo

j - Hj (xa)) (yo
j - Hj (xb)) / pi

and

(b
i)2 = j=1,pi (Hj (xb) - Hj (xa)) (yo

j – Hj (xb)) / pi

 This is nearly cost-free and can be computed

 a posteriori,
 over one or several analyses,
 in any data assimilation scheme (including 4D-Var).
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Practical implementation

TEMP wind sigmab TEMP wind sigmao

__ specified in Arpège 4D-Var
--- diagnosed in observation space
(20081127 00H – 20081228 18H)
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Ensemble/diagnosed variances
in observation space

 Ensemble variances can be computed at observation locations i with

(be
i)2 = j=1,ne (hj b )2 / ne,

where ne is the ensemble size.

 Can be compared to diagnosed errors

(bd
i)2 = j=1,pa (hj (xb) - hj (xa)) (yo

j – hj (xb)) / pa,

where pa is the number of obs. taken around each obs. location i.

 pa is optimized to maximize the correlation between (be
i)2  and (bd

i)2 
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Ensemble / diagnosed
background errors in HIRS-7 space

(from Gibier, 2009)

Diagnosed 4D-Var 
background errors

3D-Var FGAT ensemble

4D-Var ensemble
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Ensemble / diagnosed
background errors

(from Gibier, 2009)

__ ensemble
--- diagnosed
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Impact of observations
on forecasts

 Measure of the quality of a forecast xf=M(x):

J(x) = (M(x)-xv )T C (M(x)-xv ),

with, for example, C = energy norm.
and xv the verifying analysis at final time tf. 

(Langland et Baker, 2004; Gelaro and Zhu, 2009)

 Expression in terms of initial error:

J() = (M )T C (M ),

with x-xt the error at initial time ti.
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Impact of observations
on forecasts / optimality

 Taylor expansion at a:
J(b) = J(a) + (b - a)T J’(a) + ½ (b - a)T J’’(a) (b - a)

= J(a) + 2 (b - a)T MT C M a + (b - a)T MT C M (b - a)
= J(a) + 2 dT KT MT C M a + dT KT MT C M (b - a)

First order term = 0 in an optimal system (<d, a> = 0)! (Cardinali, 
2008)

 Taylor expansion at b:
J(a) = J(b) + 2 (a - b)T MT C M b + (a - b)T MT C M (a - b)

= J(b) + 2 dT KT MT C M b + dT KT MT C M (a - b)

First order term = - 2 Tr(MT C M K H B) = twice the optimal 
value of error reduction by observations!

 2nd order expansion required.  (Errico, 2007)
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Conclusion

 Wide range of diagnostics, linked with Extended KF formalism.

 Useful to keep in mind.

 Applicable to a slightly non-linear scheme such as incremental 4D-Var.

 A posteriori diagnostics are quite useful
 to diagnose and tune background and observation error variances,
 to measure information content of observations.

 Might be also useful to diagnose model error.


