Observing System Experiments (OSE) to estimate the impact of observations in NWP

Peter Bauer

Acknowledgements: Niels Bormann, Carla Cardinali, Andrew Collard, Mohamed Dahoui, Alan Geer, Sean Healy, Tony McNally, Gabor Radnoti

European Centre for Medium-Range Weather Forecasts Reading, UK

Satellite observing system: Status June 2009

Radiances:

- AMSU-A on NOAA-15/16/17/18/19, AQUA, Metop
- AMSU-B/MHS on NOAA-16/17/18/19, Metop
- SSM/I on F-13/15, AMSR-E on Aqua, TMI on TRMM
- HIRS on NOAA-17, Metop
- AIRS on AQUA, IASI from Metop
- MVIRI on Meteosat-7, SEVIRI on Meteosat-9, GOES-11/12, MTSAT-1R imagers

Ozone:

 Total column ozone from SBUV on NOAA-17/18, SCIAMACHY on Envisat, OMI on Aura, GOME-2 on Metop

Bending angles:

• COSMIC (6 satellites), GRAS on Metop, GRACE-A

Atmospheric Motion Vectors:

• Meteosat-7/9, GOES-11/12, MTSAT-1R, FY-2C, MODIS on Terra/Aqua

Sea surface parameters:

- Significant wave height from Seawinds on QuikSCAT, Scatterometer on ERS-2, ASCAT on Metop
- Near-surface wind speed from RA-2/ASAR on Envisat, Jason altimeter

Data types

- > Satellite data amounts to 99% in screening and 95% in assimilation.
- Radiance data dominates assimilation with 90%.
- Relative GPSRO (limb) data amount strongly increases between screening and assimilation while ozone data is largely reduced.

Observing System Experiments

Investigating fundamental observation impact:

- Comparison between instruments that constrain similar variables (e.g. AIRS vs IASI, clear vs cloud/rain-affected microwave radiances, GPSRO and VarBC)
- Evaluation of specific operator sensitivity & 4D-Var mechanisms (e.g. geostationary CSR impact on wind analysis, single observation experiments)
- \rightarrow OSEs with single observation type in addition to poor observing system (e.g. conventional + AMVs + 1 sounder) and operational model version

Adding (improving) a new observation type:

- Introduction of new observation types (e.g. in 2009 all-sky microwave, cloud-affected infrared radiances, NOAA-19)
- Improvement of assimilation of existing observations (e.g. in 2009 IASI water vapour channels, microwave sounders lower troposphere, IASI over land)
- \rightarrow OSEs with modifications of operational model version and with operational observing system

'Continuous' observation impact assessment:

- Assessment of all individual and combined components of observing system
- → OSEs denying types from operational model/observing system, adding types to baseline system.

⇒ The continued assessment is currently only performed through operational radiance monitoring (departures, biases) and irregular (costly) OS experimentation!

Data monitoring – time series

Statistics for Radiances from Aqua / AIRS

Time evolution of statistics over predefined areas/surfaces/flags

(M. Dahoui)

ECMWF workshop on data assimilation diagnostics

Data monitoring – overview plots

Data monitoring – overview plots, advanced sounders

Data monitoring – automated warnings

http://www.ecmwf.int/products/forecasts/satellite_check/

Selected statistics are checked against an expected range.

E.g., global mean bias correction for GOES-12 (in blue):

Data monitoring – automated warnings

Data monitoring – automated warnings

Observing System Experiments

Investigating fundamental observation impact:

- Comparison between instruments that constrain similar variables (e.g. AIRS vs IASI, clear vs cloud/rain-affected microwave radiances, GPSRO and VarBC)
- Evaluation of specific operator sensitivity & 4D-Var mechanisms (e.g. geostationary CSR impact on wind analysis, single observation experiments)
- \rightarrow OSEs with single observation type in addition to poor observing system (e.g. conventional + AMVs + 1 sounder) and operational model version

Adding (improving) a new observation type:

- Introduction of new observation types (e.g. in 2009 all-sky microwave, cloud-affected infrared radiances, NOAA-19)
- Improvement of assimilation of existing observations (e.g. in 2009 IASI water vapour channels, microwave sounders lower troposphere, IASI over land)
- \rightarrow OSEs with modifications of operational model version and with operational observing system

'Continuous' observation impact assessment:

- Assessment of all individual and combined components of observing system
- \rightarrow OSEs denying types from operational model/observing system, adding types to baseline system.
- ⇒ The continued assessment is currently only performed through operational radiance monitoring (departures, biases) and irregular (costly) OS experimentation!

Investigating fundamental observation impact: TCWV

Example: How much of the mean TCWV analysis is driven by clear and cloud/rain-affected microwave observations and are they complementary? (CTRL: full OS, BL = conventional + AMV + 1 AMSU-A, CLEAR/RAIN: BL + CLEAR/RAIN PMW)

Investigating fundamental observation impact: TCWV

Mean 36-12h precipitation forecast initialized at 12 UTC

[J/kg]

Investigating fundamental observation impact:

- Example: How do GPSRO data (unbiased not bias corrected) affect variational bias correction of AMSU-A radiance data (at levels where model temperature biases are significant)?
- OSE: only conventional + Metop AMSU-A, MHS, initialized with operational analysis:
 - control
 - control + COSMIC GPSRO
- Variational bias correction active.
- → AMSU-A channel 8-11 bias correction smaller when GPSRO data present (better constraint)
- → AMSU-A channel 12-13 bias correction larger when GPSRO data present (model bias too large?)

Investigating fundamental observation impact: GPSRO

Observing System Experiments

Investigating fundamental observation impact:

- Comparison between instruments that constrain similar variables (e.g. AIRS vs IASI, clear vs cloud/rain-affected microwave radiances, GPSRO and VarBC)
- Evaluation of specific operator sensitivity & 4D-Var mechanisms (e.g. geostationary CSR impact on wind analysis, single observation experiments)
- → OSEs with single observation type in addition to poor observing system (e.g. conventional + AMVs + 1 sounder) and operational model version

Adding (improving) a new observation type:

- Introduction of new observation types (e.g. in 2009 all-sky microwave, cloud-affected infrared radiances, NOAA-19)
- Improvement of assimilation of existing observations (e.g. in 2009 IASI water vapour channels, microwave sounders lower troposphere, IASI over land)
- → OSEs with modifications of operational model version and with operational observing system

'Continuous' observation impact assessment:

- Assessment of all individual and combined components of observing system
- \rightarrow OSEs denying types from operational model/observing system, adding types to baseline system.
- ⇒ The continued assessment is currently only performed through operational radiance monitoring (departures, biases) and irregular (costly) OS experimentation!

Adding a new observation type

Technical implementation:

- BUFR conversion of received format (if necessary)
- BUFR conversion to observational database (ODB) that is used in analysis system
- Management of satellite/instrument IDs in system
- Generation of radiative transfer model coefficients
- Screening (q/c for data problems, clouds, surfaces)
- Management of satellite/instrument in variational bias correction

Monitoring:

- Blacklisting of observations (i.e. data active in screening but not in minimization)
- Monitoring experiments to evaluate data quality and spin up biases
 Diagnostics

Analysis impact evaluation:

- Assimilation experiments with data active and evolved biases (plus control)
- Impact on short-range forecast/analysis fit to other observations
- Impact on mean analysis state

Forecast impact evaluation:

- Assimilation experiments with data active and evolved biases (plus control)
- Impact on short-to-medium-range forecasts (statistical significance)

Evaluation for operational implementation with a new cycle:

Repeat previous two steps with other modifications

Experiment verification

Analyses:

 \rightarrow Fit (bias and standard deviation) of observations (in-situ and remotely sensed) to model first guess and analysis: Better observing system should improve analysis and short-range forecast, i.e. draw closer to entire observed data set and should reduce bias correction.

Experiment verification

Forecasts:

- Verification against experiment's own analyses,
- Verification against operational analyses,
- Verification against observations,

incl. information on statistical significance.

 \rightarrow Accuracy (anomaly correlation, root-mean-square error) of selected meterological parameter (T, q, z, R) forecasts at significant model heights (1000, 750, 500, 200 hPa): Better observing system should improve analysis and medium-range forecast, i.e. produce larger anomaly correlations and smaller errors.

- AIRS CO₂ and H₂O channels assimilated since October 2003.
- IASI CO₂/H₂O channels assimilated since June 2007/March 2009.
- Assimilated in clear-sky areas and above clouds , since March 2009 in fully overcast situations, AIRS (IASI not) over land surfaces/sea-ice.
- Continuous revision of channel usage, quality control.

IASI – channel 212 (250 hPa)

<u>First-guess departure standard deviation</u> (K; 7 days) Assimilation over sea-ice but not over land

 \Rightarrow Information available for analysis from observations (= innovation)

ECMWF workshop on data assimilation diagnostics

P. Bauer 06/2009

(G. Radnoti)

IASI – channel 212 (250 hPa)

Mean analysis sensitivity to observations* (7 days) Assimilation over sea-ice but not over land

\Rightarrow Sensitivity of the analysis to those observations

(* or self-sensitivity, see Cardinali et al. (2004))

ECMWF workshop on data assimilation diagnostics

IASI – channel 212 (250 hPa)

<u>Mean analysis increment</u> (K; 7 days) Assimilation over sea-ice but not over land

 \Rightarrow Work performed by the analysis in observation space (G. Radnoti)

Adding 10 IASI water vapour channels

Fit to other observations: NOAA-17 HIRS, Aqua AIRS

Fit to other observations: Radiosondes

Forecast skill: Verified with operational analysis

Forecast skill: Verified with own analysis

Forecast skill: Verified with experiment's analysis

Forecast skill and model bias

The IASI observations act to dry the NOSAT (and OPS) system which has run to an excessively moist state

 \rightarrow is consistent with the observed climate bias of the forecast model 700hPa.

→ observations that draw analysis away from model climate will score negatively unless when both experiment and control are verified with improved analysis

Observing System Experiments

Investigating fundamental observation impact:

- Comparison between instruments that constrain similar variables (e.g. AIRS vs IASI, clear vs cloud/rain-affected microwave radiances, GPSRO and VarBC)
- Evaluation of specific operator sensitivity & 4D-Var mechanisms (e.g. geostationary CSR impact on wind analysis, single observation experiments)
- → OSEs with single observation type in addition to poor observing system (e.g. conventional + AMVs + 1 sounder) and operational model version

Adding (improving) a new observation type:

- Introduction of new observation types (e.g. in 2009 all-sky microwave, cloud-affected infrared radiances, NOAA-19)
- Improvement of assimilation of existing observations (e.g. in 2009 IASI water vapour channels, microwave sounders lower troposphere, IASI over land)
- → OSEs with modifications of operational model version and with operational observing system

'Continuous' observation impact assessment:

- Assessment of all individual and combined components of observing system
- \rightarrow OSEs denying types from operational model/observing system, adding types to baseline system.
- ⇒ The continued assessment is currently only performed through operational radiance monitoring (departures, biases) and irregular (costly) OS experimentation!

Concluding remarks

- OSEs are continuously performed for:
 - assessment of new (revised) observation impact along model updates;
 - study of basic impact features (poor observing system);
 - assessment of entire observing system components.
- Impact is currently evaluated using:
 - fit to short-range forecast/analysis model fields (consistency, reference observations);
 - model forecast skill using standard scores.
- Shortcomings of current observation impact assessment:
 - evaluation of individual observation type impact on fit of model fields to other observation types is only available for analyses *not* forecasts;
 - diagnostics for tuning/optimization of observing system is not available (thinning, channel selection, observation errors);
 - overview diagnostics require large and costly set of OSEs, no continuous built-in evaluation yet;
 - standard forecast scores often contradict analysis evaluation (new observations add noise and may increase root-mean-square 'error').

Experiment forecast verification - Issues

Forecasts:

- Verification against experiment's own analyses:
 - assumes that observing system in experiment is affecting mean analysis state such that operational analysis is not a good reference,
 - risk of larger variability in analysis due to the additional information introduced by new observation type.
- Verification against operational analyses:
 - justified if experiment configuration obviously inferior compared to operational system (spatial resolution, observing system (baseline experiments)),
 - risk of bias towards operational observing system (e.g. evaluating impact of system A in experiment and control with operational system that contains A).
- Verification against observations:
 - currently only available for radiosonde observations
- Scores:
 - normalized differences are difficult to interpret if forecast errors are small

