ECMWF annual seminar 2009

Diagnostics of model numerical cores

Nils P. Wedi¹ European Centre for Medium Range Weather Forecasts

wedi@ecmwf.int

Introduction

Reductionism: Assume that essential flow characteristics remain unchanged when the domain, the forcings or the equations are changed. Typically, a complete physical similarity is precluded, but an approximate dynamic similarity can be of substantial practical importance (Buckingham, 1914).

- Often a hierarchy of numerical model setups with gradually increased complexity is used.
- Diagnostics include the comparison with analytic solutions, with large-eddy or global-scale simulation benchmarks, or with geophysical laboratory experiments and direct numerical simulations (DNS) thereof.

Hierarchy of reduced models

- Single-column model (1-D, model physics)
- X-Z slice model (2-D, multi-layer, physics and/or dynamics)
- Shallow water model (2-D, single layer, model dynamics)
- The full numerical model (3-D, multi-layer, physics and/or dynamics)
 - Limited-area domain simulations
 - Reduced-size planet simulations
 - Held-Suarez "model climate" simulations
 - Aquaplanet "model climate" simulations
 - DNS/LES of a laboratory experiment

What is the model dynamical core ?

- Historically, the "dynamical" (dry) part of the model without any diabatic forcings (i.e. physics).
- However, in NWP with increased resolution O(0.1-10km) more and more of the physics (e.g. gravity waves, moist processes, convection) are resolved and it becomes increasingly ambiguous if a parametrized (subgrid-scale) term should be computed at all and if it should be computed in the "physics" interface or the "dynamics".

The shallow water model

$$\frac{\partial \mathbf{v}_h}{\partial t} + \mathbf{v}_h \cdot \nabla \mathbf{v}_h + f \mathbf{k} \times \mathbf{v}_h + g \nabla h = 0$$
$$\frac{\partial h}{\partial t} + \mathbf{v}_h \cdot \nabla h + h \nabla \cdot \mathbf{v}_h = 0$$

- Justification as a reduced model (Taylor, 1936; Matsuno, 1966)
- Published test cases *Williamson et. al., JCP 102, p. 211-224 (1992)*
- Example 1: Advection of cos-bell hill over the pole
- Example 2: The Rossby-Haurwitz wave and the influence of the lunar gravitational potential

Example 1: Advection of Cosine bell over the pole (alpha=90 degrees) **IFS-SHW**

Nils Wedi, ECMWF 2009

Example 1: Advection of Cosine bell over the pole (alpha=90 degrees)

Error measures graphed as a function of time or as a function of resolution Shallow Water Test Case 1: L1, L2, Linf Errors.

Days

ECMW

Example: Semi-implicit spectral element shallow water model on the cubed sphere

(Thomas and Loft, J. Sci. Comp., 17, p.339-350 2002)

Example 2: The Rossby-Haurwitz wave ... and the influence of the Moon

Rossby-Haurwitz waves (here wavenumber 4) are steadily propagating solutions of the fully nonlinear nondivergent barotropic vorticity equation on the sphere (Haurwitz, 1940)

Example 2: The Rossby-Haurwitz wave ... and the influence of the Moon

- The analytic Rossby-Haurwitz wave initial condition is assumed to evolve similarly steady with the shallow water equations.
- The Rossby-Haurwitz wave is found to be unstable for wavenumbers >=4 (Lorenz 1972, Hoskins, 1973, Thuburn and Li, 2000)
- Is the gravitational pull of the Moon sufficient to trigger such an instability of the Rossby-Haurwitz wave ?

(e.g. Chapman and Lindzen 1970)

Example 2: The Rossby-Haurwitz wave ... and the influence of the Moon

Does the lunar gravitational potential matter for mediumrange weather forecast ?

Local- and synoptic-scale simulations on

the sphere ...

The size of the computational domain is reduced without changing the depth or the vertical structure of the atmosphere by changing the radius $(a < a_{Earth})$

Wedi and Smolarkiewicz, Q. J. R. Meteorol. Soc. 135: 469-484 (2009)

Test-bed for NH effects

- 3D global simulations, without the prohibitive cost, when resolving non-hydrostatic effects.
- Study the influence of the model formulation and/or various numerical choices on selected wave-types in three dimensions.
- Use of the established vertical discretization and/or physical parameterization packages.
- Use of the existing optimized 3D code framework.

Description of experiments

- All IFS experiments conducted in reduced-grid T_L159 or T_L255 configuration (320 or 512 gridpoints along equator).
- Comparison with analytic solutions and with the all-scale research code EULAG on the sphere.

Hydrostatic approximation

Filters vertically propagating acoustic waves

w is obtained *diagnostically* from the continuity equation.

Acoustic waves

- The nonhydrostatic, fully elastic model admits the propagation of sound waves
- Comparison against analytic solution
- Impact of the semi-implicit formulation on the propagation

A spherical acoustic wave in a stratified (isothermal) atmosphere

analytical solution from (Landau and Lifshitz, Fluid Mechanics, §70.) A sound wave in which the distribution of density, velocity and other flow variables only depends on the distance from some point.

A spherical acoustic wave in a stratified (isothermal) atmosphere

NH-IFS T_L159L91

Nils Wedi, ECMWF 2009 Slide 18

Gravity waves

- Propagation
- Drag

Quasi two-dimensional orographic flow with linear vertical shear

The figures illustrate the correct horizontal (NH) and the (incorrect) vertical (H) propagation of gravity waves in this case (Keller, 1994). Shown is vertical velocity.

The critical level effect on linear and non-linear flow past a three-dimensional hill

Ri = 1

The critical level effect on linear and non-linear flow past a threedimensional hill

920

930

940

950

960

970

980

990

1000 |___ 140<u>°W</u>

920

940-

950-

EULAG

critical level

Convective motion (3D bubble test)

Convective motion (3D bubble test)

Held and Suarez (BAMS, 1994)

Held-Suarez simulations / Rossby waves

- Zonal mean diagnostics
- Temporal anomalies
- Kinetic energy spectra
- Wavenumber frequency spectra

zonal-mean zonal wind U

Held-Suarez climate $a=a_{Earth}/10$ Averaged 30°N-50°N Temporal anomalies of zonal wind

Held-Suarez climate

wavenumber-frequency diagrams of zonal wind

e.g. Rossby wave dispersion:

$$\omega_R \approx \frac{2\Omega N^2 m}{n(n+1)N^2 + f^2 a^2 (\delta_A N^2 / c_s^2 + k_z^2 + \Gamma_A^2)}$$

Simmons and Burridge 1981

IFS Held-Suarez simulation with a deep hydrostatic model following *White and Bromley*, 1995

IFS Held-Suarez simulation with a deep non-hydrostatic elastic model following *Wood and Staniforth 2003*

EULAG Held-Suarez simulation with a deep non-hydrostatic anelastic model, Wedi and Smolarkiewicz, 2009

ECMWF

Held-Suarez Tropics

IFS - Temporal anomalies of velocity potential 600hPa 200hPa

Nils Wedi, ECMWF 2009 Slide 37

Aquaplanets

Neale, R.B. and B.J.Hoskins, 2000a:

A standard test for AGCMs including their physical parameterizations. I: The proposal. Atmos. Sci. Lett, Vol.1, No.2, pp. 101-107.

Different SST distributions force the flow

- 3 year "model climate"
- APE intercomparison project with an ATLAS of many different models/parameters in preparation http://www.met.reading.ac.uk/~mike/APE/

Courtesy of D. Williamson

Courtesy of D. Williamson

Tropical Wave Spectra (control)

Courtesy of Mike Blackburn APE Aqua-Planet

Log-power of symmetric modes of equatorial precipitation (10°N - 10°S average)

Tropical Wave Spectra (ECMWF)

Courtesy of Mike Blackburn APE Aqua-Planet

- Recent model changes to the convection parametrization (cy32r3, November 2007, *Bechtold et al. 2008*)
- Precipitation organised strongly in equatorial waves

Aquaplanet control: precipitation (Courtesy of Peter Bechtold)

29R2

Note the unrealistically high zonally averaged total precipitation rates (mm/day) in 29r2.

The theoretical phase speed for Kelvin waves is 15-20 m/s, here we roughly see 18 m/s in 32r3.

Agua-Planet

Experiment Project

32R3

Aquaplanet control: Hadley cell and CAPE (Courtesy of Thomas Jung)

Tropical Variability (precipitation) Courtesy of D. Williamson

Higher resolution models

average 5%-5%

Variability of organized convection

- The formation of organized convection is sensitive to explicit or implicit viscosity in under-resolved simulations.
- The sensitivity is consistent with linear theory adapted to include the effect of anisotropy of viscosity (horizontal vs. vertical) at moderate Rayleigh number.

(Piotrowski et al., J. Comput. Phys. 2009)

It suggests a careful control of the effective numerical viscosity in the numerical core ! (such as the dependence of the truncation error on the derivatives of the flow variables rather than the flow variables themselves).

DNS of laboratory experiment: The QBO

- The laboratory experiment shows the pure gravity wave acceleration of the zonal mean zonal flow.
- The setup represents a stringent test of the model numerical core.

The stratospheric QBO

- westward

+ eastward

(unfiltered) ERA40 data (Uppala et al, 2005)

ECMWF

The laboratory experiment of Plumb and McEwan

- The principal mechanism of the QBO was demonstrated in the laboratory *Plumb and McEwan, J. Atmos. Sci. 35 1827-1839 (1978)*
- University of Kyoto

http://www.gfd-dennou.org/library/gfd_exp/exp_e/index.htm

Animation:

(Wedi and Smolarkiewicz, J. Atmos. Sci., 2006)

Schematic description of the QBO laboratory analogue

Viscous simulation

Eulerian

semi-Lagrangian

Local Richardson number analysis

$$Ri = -\frac{g}{\rho} \frac{\partial \rho}{\partial z} \left/ \left(\frac{\partial u}{\partial z} \right)^2 \right.$$

Inviscid simulation

Numerical realisability of wave driven flows

Influence on the period and the vertical extent of the resulting zonal mean zonal flow changes

- Lower horizontal resolution results in increasing period (~16 points per horizontal wavelength still overestimates the period by 20-30%)
- Lower vertical resolution results in decreasing period and earlier onset of flow reversal as dynamic or convective instabilities develop instantly rather than previously described wave-wave mean flow interaction (need ~10-15 points per vertical wavelength, <5 no oscillation observed)</p>
- First or second order accurate (e.g. rapid mean flow reversals with 1st order upwind scheme)
- A low accuracy of pressure solver may result in spurious tendencies with a magnitude similar to physical buoyancy perturbations and are due to the truncation error of the Eulerian scheme; equally explicit vs. implicit formulation of the thermodynamic equation results in distorted longer mean flow oscillation (explicit may be improved by increasing the vertical resolution)
- Choice of advection scheme (flux-form Eulerian more accurate)
- Upper boundaries and stratification changes (may catalyze the onset of flow reversal; also in 2D Boussinesq experiments due to wave reflection, in atmospheric conditions also changing wave momentum flux with non-Boussinesq amplification of gravity waves)

Summary

Introduced the concept of reductionism and a hierarchy of reduced models with gradually increased complexity to test a numerical model core but even more so to test the model assumptions and our understanding !

Additional slides

Conclusions

- Suitable for testing 3D non-hydrostatic developments in an existing hydrostatic technical framework with minimal effort and computational cost.
- Reduced-size planet experiments offer exciting new avenues for research with complex NWP models, while further testing the code for potential future applications.

see also Q. J. R. Meteorol. Soc. 135: 469-484 (2009) for more details!

Some characteristics of IFS and EULAG

IFS www.ecmwf.int/research	EULAG http://box.mmm.ucar.edu/eulag
Time integration is semi-implicit or iterative-	Time integration is an implicit, two-time-level, flux-
centred-implicit (ICI), coupled to a two-time-level	form Eulerian or semi-Lagrangian fluid solver on a
semi-Lagrangian advection on a reduced	regular grid, with an iterative, preconditioned
Gaussian grid, using the spectral transform	conjugate residual algorithm for solving the resulting
method and a direct solver for the resulting	elliptic pressure equation.
Helmholtz equation.	
Terrain-following, mass-based coordinate	Terrain-following, height coordinate
Fully compressible	Anelastic/Boussinesq/other
Spectral horizontal representation with spherical	Non-staggered/staggered gridpoint representation,
harmonics basis functions; finite-difference (NH) /	finite-differences
finite element (H) vertical discretization	
Deep/shallow atmosphere	Deep/shallow atmosphere

Cost-effectiveness

- The cost of a resolution of 1km globally, O(~T_L20000), is approximately 300 x T_L2047 (approx. 10 km) and currently not affordable.
- However, reducing the radius by a factor 10 (even accounting for a corresponding reduction in time-step) reduces the problem size to make 1km globally affordable now, which in return opens up intriguing opportunities for research in the future on initial and boundary conditions for small planets... ?!

A multiphase example (Sylvie Malardel)

$$\rho = \rho_d + \rho_v + \rho_c + \rho_i + \rho_r + \dots$$

$$c_v = (1 - q_v - q_c - q_i - q_r)c_{vd} + q_v c_{vv} + (q_c + q_r)c_{liq} + (q_i + \dots)c_{sol}$$

$$c_p = (1 - q_v - q_c - q_i - q_r)c_{pd} + q_v c_{pv} + (q_c + q_r)c_{liq} + (q_i + \dots)c_{sol}$$

$$R = R_d - (R_v - R_d)q_v - R_d (q_c + q_i + q_r + \dots)$$

$$p = \rho RT$$
Hydrostatic Model
$$\frac{Dv}{Dt} = \dots$$

$$\frac{D}{Dt}q_{(k=v,c,i,r,\dots)} = P_{phys,q_k}$$

$$\frac{DT}{Dt} - \frac{RT}{C_p p}\frac{Dp_{hyd}}{Dt} = \frac{Q}{c_p} = P_{phys,T}$$

$$\frac{Dp_{hyd}}{Dt} = -\int \nabla_p \cdot v$$

ECMV

A multiphase example (Sylvie Malardel)

Nonhydrostatic Model
(note the additional
prognostic equations for
pressure and vertical velocity)
Physics or Dynamics ?

$$\frac{Dv}{Dt} = ..., \frac{Dw}{Dt} = ...$$

$$\frac{D}{Dt}q_{(k=v,c,i,r,...)} = P_{phys,q_k}$$

$$\frac{DT}{Dt} - \frac{RT}{c_p p} \frac{Dp}{Dt} = \frac{Q}{c_p} = P_{phys,T}$$

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot v \quad \text{currently set to 0 in IFS}$$

$$\Rightarrow \frac{1}{p} \frac{Dp}{Dt} + \frac{c_p}{c_v} \nabla \cdot v = \frac{c_p}{c_v} \frac{1}{R} \frac{DR}{Dt} + \frac{Q}{c_v T}$$

Held-Suarez: Time variance of stationary zonal mean zonal flow

(5- day low-pass filtered)

(temporal) anomaly of velocity potential 200hPa

Full IFS 'climate' simulation

