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Cloud Validation: The issues

Cloud observations

Cloud simulation

Error Parametrisation 
improvements

Sounds easy…..
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Cloud Validation: The problems

• How much of the ‘error’ derives from observations? 

Cloud observations 
error = ε1

Cloud simulation 
error = ε2 

Error 
Parametrisation 
improvements
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Cloud Validation: The problems

• Which Physics is responsible for the error? 

Cloud observations

Cloud simulation

Error 
Parametrisation 
improvements

radiation

convection
cloud 

physics
dynamics

turbulence
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Cloud Validation: The problems

Cloud observations

Cloud simulation
Error 

Parametrisation 
improvements

radiation

convection
cloud 

physics
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turbulence
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1. Methodology for 
diagnosing errors 

and improving 
parametrizations
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Cloud Validation: The problems

Cloud observations

Cloud simulation
Error 

Parametrisation 
improvements

radiation

convection
cloud 

physics
dynamics

turbulence

1. Methodology
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A strategy for cloud parametrization 
evaluation

C.Jakob
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Top-of-atmos 
net LW 

radiation

Model 
T159 
L91

CERES

Difference

too 
high

too low

-150

-300

-150

-300
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Model 
T159 
L91

CERES

Difference

albedo 
high

albedo low

350

100

350

100

Top-of-atmos 
net SW 

radiation
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Total Cloud 
Cover 
(TCC) 

Model 
T159 
L91

ISCCP

Difference

TCC high

TCC low

80

10

80

10
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Total Column 
Liquid Water

(TCLW) 

Model 
T159 
L91

SSMI

Difference

high

low

250

25

250

25
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ECMWF Model Configurations

• ECMWF Global Atmospheric Model (IFS) 

– T159 (125km) Monthly and Seasonal Prediction, (+Model Testing) 

– T399 (50km) Ensemble Prediction System (EPS)

– T511 (40km) Previous NWP 

– T799 (25km) Current Deterministic Global NWP 10 day f/c

– T1279 (16km) NWP (soon!)

– 62 and 91 levels in use

• Need a model with a “climate” that is robust to resolution.
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Clouds, Precipitation and 
Model Resolution

1. Choice and formulation of microphysical processes
– As resolution increases, the range of scales of dynamical forcing increases. Non-

linear microphysical processes can respond differently.

– Parametrization schemes are based on time/space scale separation. As 
resolution increases, require change from diagnostic to prognostic variables.

2. Representation of sub-gridscale inhomogeneities

3. Numerical techniques for efficient implementation
– Long timesteps used for computational efficiency.

– Explicit vs implicit formulations. 
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TOA Net Radiation (T511 vs T159) 

TOA Net SW TOA Net LW
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Sensitivity to resolution
Total Cloud Cover (T511 - T159) 
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Sensitivity to resolution
Ice Water Content (T511 - T159) 
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• At earlier cycles, the problem was 
much worse. 

• Caused by the “exact” solver of 
Tiedtke in combination with ice 
sedimentation acting as a proxy for 
autoconversion if ice fell into clear sky.

29
r1

 S
ch

em
e

100 vs 50
layer resolution

Vertical resolution sensitivity
Ice Sedimentation

30
r2

 S
ch

em
e• Forward-in-time upstream 

implicit solver. 
• Small sensitivity to vertical 

resolution / timestep.

Adrian Tompkins
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A strategy for cloud parametrization 
evaluation

C.Jakob
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Isolating the source of error

• We want to isolate the sources of error. Focus on particular 
phenomena/regimes, e.g. 
– Extra tropical cyclones
– Stratocumulus regions

• An individual case may not be conclusive: Is it typical? 
• On the other hand general statistics may swamp this kind of 

system
• Can use compositing technique (extra-tropical cyclones)
• Focus on distinct regimes if can isolate (SCu, Trade 

Cumulus)
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Composites – Extra-tropical cyclones

Overlay about 1000 cyclones, 
defined about a location of 
maximum optical thickness

Plot predominant cloud types 
by looking at anomalies from 
5-day average

Klein and Jakob, 1999, MWR

High tops=Red, Mid tops=Yellow, Low tops=Blue

• High Clouds too thin

• Low clouds too thick
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Model Climate: Regime dependent error?
CY30R1

CY31R1

CY32R2

CY32R3

McICA SW radiation

ERA-I cycle 
(almost)

Convective param. 
and vertical diffusion

TOA net SW radiation vs. CERES: 
Too much reflectance from TCu, not enough from Sc

Maike
Ahlgrimm
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Does the model have “correct” trade 
cumulus cloudiness?

Cloud amount 
when present 

(AWP)

Cloud frequency 
of occurrence 

(FOO)

Radiative 
properties

Three aspects:

helps identify
cloud type

with AWP gives
total cloud cover

radiative balance 
ultimately drives 

the system
Maike Ahlgrimm
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Isolating the Trade Cu Regime

Identify cloud samples as:
• with less than 50% cloud fraction
• cloud top below 4km
• over ocean
• between 30S and 30N

Maike Ahlgrimm
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TCu frequency of occurrence (FOO)
46.5%

Model has TCu more frequently than observed

70.8%

Maike Ahlgrimm
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Cloud amount when present 
(AWP)
OBS

ERA-I

Most of the additional TCu samples have 
very small cloud fractions

Cloud fraction is subject to representativity 
error. Observations have not been 
corrected!

Maike Ahlgrimm
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Cloud top height

CALIPSO

ERA-I
Model clouds have
higher cloud tops 
than observed

Skewed distribution 
with low peak: 
Majority of TCu clouds 
are very shallow, few 
grow deeper 

Maike Ahlgrimm
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A strategy for cloud parametrization 
evaluation

C.Jakob
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GCSS - GEWEX Cloud 
System Study
(Moncrieff et al. Bull. AMS 97)

Use observations to evaluate parameterizations of 
subgrid-scale processes in a CRMStep 1

Evaluate CRM results against observational datasetsStep 2

Use CRM to simulate precipitating cloud systems forced by 
large-scale observationsStep 3

Evaluate and improve SCMs by comparing to 
observations and CRM diagnosticsStep 4

PARAMETERISATION

GCMS - SCMS

CRMs OBSERVATIONS
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GCSS: Validation of CRMs
Redelsperger et al QJRMS 2000
SQUALL LINE SIMULATIONS

Observations - Radar 
Open BCs

Open BCsOpen BCs

Periodic BCs

Simulations from different models
(total hydrometeor content)

Conclude that only 3D 
models with ice and open 

BCs reproduce structure well
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GCSS: Comparison of many SCMs with a CRM
Bechtold et al QJRMS 2000 SQUALL LINE SIMULATIONS

CRM
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Summary

• Long term climatologies:
– Climate systematic errors – we want to improve the basic state/climatology of 

the model
– But which physics is responsible for the errors? Non-linear interactions.
– Long term response vs. transient response.
– We want to remove sensitivity to resolution = the parametrization problem! 

• Isolating regimes: Composites and focus on geographical 
regions.

• Case studies
– Detailed studies with Single Column Models, Cloud Resolving Models, NWP 

models
– Easier to explore parameter space.
– Are they representative? Do changes translate into global skill?
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2. Comparing model 
and obs: Uncertainty 

and limitations
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Cloud Validation: The problems

Cloud observations

Cloud simulation
Error 

Parametrisation 
improvements

radiation

convection
cloud 

physics
dynamics

turbulence

2. Uncertainty
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What is a cloud ?
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Models and observations

• Different observational instruments will detect different 
characteristics of clouds.

• A cloud from observations may be different to the 
representation in models

What is a cloud ?

Understanding the limitations of different instruments
Benefit of observations from different sources
Comparing like-with-like (physical quantity, resolution)
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From 
Waliser et 
al. (2009), 

JGR

Widely varying estimates of IWP from different satellite datasets!

Current 
ECMWF 

model 
IWP

Verification
Annual average T159 Ice Water Path vs. Obs

CloudSat
(From 

Waliser et 
al 2009)
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Model Ice Water Path (IWP) 
(1 year climate)

New 5 prognostic cloud microphysics
Ice vs. Snow

CloudSat 1 year climatology

IWP from prognostic cloud ice variable

IWP from cloud ice + precipitating snow

Observed Ice Water Path (IWP)

g m-2
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Global data

CloudSat: Cloud profiler radar 94GHz
CALIPSO: Cloud profiler lidar 532, 1064nm + Infra Red Imager

AQUA:  radiometers MODIS, AIRS, CERES, AMSR-E

A-Train: 28th April 2006

Global coverage:
Radar :2.5 km along track X 1.2 km across track / 500m =>250m

Lidar: 333 m / 30 m
Our merged product: CloudSat footprint/vertical resolution 60m

CloudSat/CALIPSO/EarthCare Meeting- 2008

Julien Delanoë/Robin Hogan
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Example of mid-Pacific 
convection

CloudSat radar

CALIPSO lidar

MODIS 11 micron channel

Time since start of orbit (s)

H
ei

g
h
t 

(k
m

)
H

ei
g
h
t 

(k
m

)

Cirrus detected only by lidar

Mid-level 
liquid 
clouds

Deep convection penetrated only by radar

Julien Delanoë/Robin Hogan
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Why combine radar, lidar and radiometers?

CALIPSO lidar

CloudSat radar

Radiances ensure that the retrieved profiles can be used for radiative transfer studies 
–Single channel: information on extinction near cloud top

–Pair of channels: ice particle size information near cloud top

We use “unified” variational scheme to retrieve ice cloud properties, thin and thick ice clouds
Delanoë and Hogan 2008, JGR (doi:10.1029/2007JD009000)

Radar Z∝D6, lidar β’∝D2 so the 
combination provides particle 
size

– Lidar: sensitive to particle 
concentration, can be 
extinguished 

– Radar: very sensitive to the 
particle size, not very sensitivity 
to liquid clouds and small ice 
particles

Julien Delanoë/Robin Hogan



Diagnosing Cloud Error, Forbes
ECMWF Seminar 2009

Formulation of the retrieval scheme

ice
1

ice
01

ice
0

ln

ln
ln

ln

n

m

N

N
S

α

α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

x

M

M

• Observation vector •  State vector (which we want 
to retrieve)

– Elements may be missing
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Attenuated lidar 
backscatter profile

Infrared radiance
Radiance difference

Radar reflectivity 
factor profile

Iterative process: compare predicted observations and measurements, with an a-priori
and measurement errors as a constraint

We know the observations (instrument measurements) and we would like to know cloud properties : visible 
extinction, Ice water content, effective radius…

Julien Delanoë/Robin Hogan
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Combining radar and lidar…

Cloudsat radar

CALIPSO lidar

Preliminary target classification
Insects
Aerosol
Rain
Supercooled liquid cloud
Warm liquid cloud
Ice and supercooled liquid
Ice
Clear
No ice/rain but possibly liquid
Ground

Radar and lidar
Radar only
Lidar only

Global-mean cloud fraction

Radar 
misses a 

significant 
amount of 

ice

Julien Delanoë/Robin Hogan
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log10(IWC)

Lidar only

log10(IWC)

log10(IWC)

Radar only

log10(IWC)

Radar+lidar only

Advantage of the 
algorithm:

Deep ice clouds: radar
Thin ice clouds: lidar

When radar and lidar work 
well together very good 

confidence in the 
retrievals

⇒ Obvious 
complementarity

radar-lidar

IWC increases with 
temperature:

• but spread over 2 to 3 
orders of magnitude at 

low temperatures 
• reach 5 orders of 
magnitude close to 0° C

Frequency of occurrence of IWC vs 
temperature 

Julien Delanoë/Robin Hogan
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CloudSat/CALIPSO Model Verification
GLOBAL Ice Water Content vs. T distributions

(In collaboration with Delanoë and Hogan, Reading Univ.)

Specular 
reflection ?

Changes to 
IWC retrieval 

result
Current 
scheme 

misses larger 
IWC (snow)

Distribution of 
IWC in new 
scheme is 
improved
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When comparing a model with observations, we 
need to compare like-with-like
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• Need to address mismatch in spatial scales in model (50 km) and obs (1 km)

• Sub-grid variability is predicted by the IFS model in terms of a cloud fraction 
and assumes a vertical overlap.

• Either: 
(1) Average obs to model representative spatial scale
(2) Statistically represent model sub-gridscale variability using a Monte-Carlo multi-

independent column approach.

Obs Cloudy
Cloud-free

Model gridbox 
cloud fraction

Spatial resolution mis-match

Model generated 
sub-columns

CloudSat Obs
Obs averaged onto 

model gridscale

Model gridbox 
cloud fraction CloudSat Obs

Compare

Compare

Model Cloudy
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Radar Reflectivity: Cross-section through a mid-latitude front

MODEL to OBSERVATION
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Radar Reflectivity
Cross-section through tropical convection



Diagnosing Cloud Error, Forbes
ECMWF Seminar 2009

Radar Reflectivity
Cross-section through tropical convection
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Radar Reflectivity vs. Height 
Relative Frequency of Occurrence

Tropics over ocean 30S to 30N for February 2007

CloudSat IFS Model

Lack of low reflectivity mid-
level and low-level cloud ?

Relatively too 
frequent low-level 

high reflectivity 
convective rainfall

Peak reflectivities 
too high altitude

Radar Reflectivity Statistics
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STATISTICS: Frequency of occurrence (Radar Reflectivity vs. Height)
Tropics over ocean 30S to 30N for February 2007

Significantly higher  occurrence of 
cloud in model

Radar Reflectivity Statistics
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Radar Reflectivity PDF
Contributions from cloud/precip (tropics)

Cloud Ice

Cloud Liquid Water

Stratiform Snow Convective Snow

Convective RainStratiform Rain

CloudSat IFS Model

Contributions from different model variables (unattenuated)

Data from 
09/02/2007
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Summary
• Limitations and uncertainty:

– Observations have limitations, provide a partial picture.
– We need to know the error characteristics (including systematic errors). But 

we don’t always know this!
• Synergy: 

– Different observation sources have different strengths and weaknesses Make 
the most of this complementary information (e.g. CloudSat, CALIPSO, 
MODIS)

• Need to compare like-with-like
– Compare in “model-space”, or “obs space”
– Assumptions required for both
– Spatial and temporal resolution differences

• Diagnose model problems from different angles
– Retrieval of model variables from observations (“obs-to-model”), e.g. IWC
– Forward modelling of observed variables (“model-to-obs”), e.g. Z
– Different approaches help to diagnose model problems
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3. Understanding 
Physical Processes
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Cloud Validation: The problems

Cloud observations

Cloud simulation
Error 

Parametrisation 
improvements

radiation

convection
cloud 

physics
dynamics

turbulence3. Processes
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Temperature vs. Relative Humidity

New EC cloud scheme

Homogeneous Nucleation 
Temperature

Freezing Temperature
W

ater S
aturation

Current EC cloud scheme

EC Supercooled Liquid 
Water Min. Temperature
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Precipitation validation with CloudSat    
(in collaboration with Graeme Stephens)

• Model overestimates frequency of low precipitation rates (< 1 mm/hr)
• Model underestimates frequency of high precipitation rates (> 5 mm/hr?) 

(but representativity?)
• Still an issue of uncertainty in the obs – work in progress.
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Drizzle
• Radar and lidar 

used to derive 
drizzle rate below 
stratocumulus

• Important for cloud 
lifetime in climate 
models

O’Connor et al. (2005)

• Met Office uses Marshall-
Palmer distribution for all rain
– Observations show that this 

tends to overestimate drop size 
in the lower rain rates

• Most models (e.g. ECMWF) 
have no explicit raindrop size 
distribution

From Robin Hogan
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Drizzle
1-year comparison with models

• ECMWF, Met Office and Meteo-France overestimate drizzle rate
– Problem with auto-conversion and/or accretion rates?

• Larger drops in model fall faster so too many reach surface rather than 
evaporating: drying effect on boundary layer?

ECMWF model Met Office

Observations

From Ewan O’Connor, Robin Hogan (Reading Univ.)
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Warm-rain processes

qlql
crit

Gp

qlql
crit

Gp

• Autoconversion – conversion of 
cloud droplets to raindrops

• Accretion – sweep out of cloud 
droplets by rain

• Evaporation – below cloud base

Kessler (1969)

Sundqvist (1978)
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Fixed N
Re6

Fixed w, Re3

Suzuki and Stephens, 2008

Re =
3
2

1
ρw

LWP AMSR - E( )
τ c MODIS( )

Masunaga et al., 2002a,b  
Matsui et al., 2004

Ze: layer-mean radar  
reflectivity

The observables

Ze ≈ 64NRe
6

Ze ≈
48
πρw

w( )Re
3

The relationships

Process-validation with CloudSat:
Autoconversion/accretion

From Graeme Stephens

(Autoconversion)

(Accretion)
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Summary
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Cloud Validation: The problems

Cloud observations

Cloud simulation
Error 

Parametrisation 
improvements

radiation

convection
cloud 

physics
dynamics

turbulence

2. Uncertainty 1. Methodology

3. Processes
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Summary

1. Methodology
Different approaches to verification (climate statistics, case studies, 
composites), resolution

2. Comparing model and obs: Uncertainty and limitations
Need to understand the limitations of observational data. 
Different techniques (model-to-obs, obs-to-model) and a range of 
observations are required to validate and improve cloud 
parametrizations. 

3. Processes
Can observations be used to test model’s physical relationships
between variables and to understand physical processes.
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