ECMWF reanalyses: Diagnosis and application

Dick Dee (ECMWF)

Contributions by P. Berrisford, P. Poli, S. Uppala, A. Simmons, P. Kållberg, and V. M. Others

Seminar on Diagnosis of Forecasting and Data Assimilation Systems 7-10 September 2009

CECMWF		Home	Your Room Lo	gin <u>Contact</u>	Feedback Site Map	Search:	
Extreme Forecast Index tp	About Us Overview Getting here Committees	Products Forecasts Order Data Order Software	Services Computing Archive PrepIFS	Researc Modelling Reanalysis Seasonal	ch <u>Publicatio</u> Newsletters s Manuals Library	Calendar Calendar Employm Open Te	ent nders
	European C	entre for	Medium-Ra	nge Weath	ner Forecasts		
info	II E E	-		2 🚺 🍋 I		Hot Link	S
<u>Site Map</u> <u>Phone Directory</u> <u>Contact</u> <u>Feedback</u>	We are an i operational super-com	nternational o medium- and puting facility f	rganisation supp extended-range for <u>scientific rese</u>	orted by <u>31 Sta</u> forecasts and a arch. We pursu	ates. We provide a state-of-the-art le scientific and	Forecasts	
News & Events	technical	collaboration	with satellite age	ncies and with	the European		HOGE
Calendar			Commission			EPSgrams	TIGGE
<u>Training</u> <u>Annual Septinar</u> <u>Meeting:</u> <u>Workshups</u> <u>Press Releases</u> <u>Employment</u>	Paper on ERA	40 most high 27 M in 200 /Esse pape 'Curr	arch 2009 The pap 05, has been identif ential Science Indica rs in the field of Geo rent Classic' for Fel	I of Geoscien er 'The ERA-40 ied by Thomson tors/ as one of th osciences, and ha oruary.	nces re-analysis', published Reuters Scientific's ne most highly cited as been designated as a	Seasonal Forecast	GEMS Project
The state of the s						Reanalysis	Oceans
Forecasts		letter 05 M of the asses prese	arch 2009 An on-lin ECMWF Newslett ssed with a view to f entation of the News	ie survey is being er. The response iurther developing sletter.	g carried out of readers es will be carefully g the content and	Data Data Metview	ENSEMBLES RMDCN RMDCN
deterministic medium-range (3-6 days) weather forecasts including	EFAS Worksho	p 30 Ja Alert	anuary 2009 The 4 System (EFAS) wa	th Annual workst s held on 29 and	nop of European Flood 30 January at ECMWF	DEISA	SIMDAT #

The workshop participants came from 24 national and regional

iorecasts including MSLP and 850mb

Outline

- Introduction to reanalysis
 - The basic idea
 - Products and applications
 - Quality requirements
 - The observations
- Diagnostics
 - Fit to data, forecast quality
 - Mass, energy, and water
 - Stratosphere
- Biases and trends

Introduction to reanalysis: The basic idea

- Reanalysis uses a modern data assimilation system to reprocess past observations
- It produces a detailed description of the atmospheric evolution over an extended period of time:
 - Gridded fields of observed meteorological parameters

(ps, T, u, v, q)

- Additional parameters generated by the model (rainfall, cloud parameters, boundary layer height, ...)
- Consistent with observations (through data assimilation)
- Consistent with the laws of physics (from model equations)

Why not use archived analyses used for NWP?

NWP systems are continuously upgraded:

- Improved resolution
- Changes in model physics
- Changes in forcing data (e.g. SST)

Unphysical changes in operational analyses

Zonal mean vertical velocity at 500hPa:

From ECMWF Operations

From reanalysis (ERA-15)

Applications

- "Observations" for verification and diagnosis
 - Forecast model development, calibration of seasonal forecasting systems, climate model development; use of data assimilation increments for identifying model errors
- Input data for model applications
 - for smaller-scales (global→regional; regional→local), ocean circulation, chemical transport, nuclear dispersion, crop yield, health warnings, …
- Study of short-term atmospheric processes and influences – process of drying of air entering stratosphere, bird migration, ...
- Providing climatologies
 - ocean waves, resources for wind and solar power generation, ...
- Assessment of the observing system
 - providing feedback on observational quality, bias corrections and a basis for homogenization studies; contributing to data reprocessing activities
- Study of longer-term climate variability and trends
 - used with caution in conjunction with observational studies

Global atmospheric reanalysis products

Organization	Time Period	Resolution	Analysis Method
NASA Data Assimilation Office (DAO)	1980 to 1994	2x2.5° lat/lon (∆x ~ 280km) L20 (σ, top at 10hPa)	Optimal Interpolation (OI) with incremental analysis update
ECMWF (ERA-15)	1979 to 1993	T106 spectral (Δx ~ 125km) L31 (σ-p, top at 10hPa)	Optimal Interpolation (OI) with nonlinear normal mode initialization
NOAA NCEP and NCAR (R1)	1948 to present	T62 spectral (Δx ~ 200km) L28 (σ, top at 3hPa)	Spectral Statistical Interpolation (SSI)
NOAA NCEP and DOE (R2)	1979 to present	T62 spectral (Δx ~ 200km) L28 (σ, top at 3hPa)	Spectral Statistical Interpolation (SSI)
ECMWF (ERA-40)	1957 to 2002	T159 spectral (Δx ~ 100km) L60 (σ-p, top at 0.1hPa)	3D-Var, direct radiance assimilation
JMA and CRIEPI (JRA-25)	1979 to 2004	T106 spectral (Δx ~ 125km) L40 (σ-p, top at 0.4hPa)	3D-Var , direct radiance assimilation
ECMWF (ERA-Interim)	1989 to present	T255 spectral (∆x ~ 80km) L60 (σ-p, top at 0.1hPa)	4D-Var , variational bias correction of radiance data (VarBC)

Soon to come:

NCEP (CFSRR)	1979 to 2009	T382 spectral (Δx ~ 38km) L64 (σ-p, top at 0.2hPa)	Grid-point Statistical Interpolation (GSI) with weakly coupled ocean
NASA GMAO (MERRA)	1979 to present	0.5x0.67° lat/lon (Δx ~ 74km) L72 (σ-p, top at 0.01hPa)	Grid-point Statistical Interpolation (GSI)
JMA (JRA-55)	1958 to 2012	T319 spectral (∆x ~ 63km) L60 (σ-p, top at 0.1hPa)	4D-Var , variational bias correction of radiance data (VarBC)

Other specialized atmospheric reanalysis activities

 Regional reanalysis and downscaling

 Long-term reanalysis using only surfacepressure observations (20CR)

 Short-term reanalysis for chemical composition

Atmospheric reanalysis at ECMWF

	ERA-15	ERA-40	ERA-Interim	ERA-75 (target)			
TIME PERIOD	1979-1993	1957-2002	from 1989 onwards	from 1938 onwards			
USERS	Meteorologists and Atmospheric Scientists						
	Climate Scientists and Wider Earth Science Community						
		Additional "Environmental Users"					
				European Stakeholders			
				GMES Core & Downstream services			
INPUT DATA	Mixed Observation	onal Data Formats in A	chive	Unified, Consolidated Database Facility			
ACCESS	Observation Quality Feedback Information						
				Internet Access			
GRIDDED	Model Fields (G	RIB format)					
PRODUCTS	Real-time Product Datab			Real-time Product Database			
				Essential Climate variables			
				Internet Access			
ATMOSPHERE	Assimilation OI	Assimilation 3DVAR	Assimilation 4DVAR	Assimilation weak-constraint 4DVAR			
	31 levels	60 levels	60 levels	91 levels			
	TSUKM	125Km	80km	40 km			
	Foreing	Model	Improved Model	Improved Model & Assimilation			
LAILE	, oronig	incuci		Coupling			
OCEAN &	SST/ice Forcing	Improved SS	T/ice Forcing	Improved SST/ice			
SEA-ICE		Wave	Model	Coupling			
CHEMISTRY		Forcing	Improved Forcing	Improved Interaction			
IMPACT	Enhance Understanding of Atmospheric Variability, Leading to Improved Models						
	Investigate Past Weather and Climate, Assess Observing System Impact						
	Monitor Near Real-time Climate with Traceability to Input Data						
	Facilitate Environmental Decisions,						
				Assess Regional Climate Change &			
				Risks via Regional Reanalyses			
				Improve Earth System Modeling,			
				Maximize Benefits from Earth			
				Observation Infrastructure			

ERA-Interim

- 20+ years: 1989-2009, continuing near-real time
- Resolution: T255L60, 6-hourly (3-hourly for surface)
- Forecast model version late 2006 (Cy31r2)
- Analysis using 12-hourly 4D-Var
- Variational bias correction of radiance data (VarBC)
- Monthly updates of the product archive
- Member state users: full access via MARS
- All users: web access via ECMWF Data Server
- Copy of complete archive at NCAR (http://dss.ucar.edu)

Please visit: http://www.ecmwf.int/research/era

Quality requirements for reanalysis products

- Accurate representation of observations
 - Departures from assimilated data
 - Comparisons with independent data
- Physical coherence of analysed fields
 - Forecast quality
 - Validation of model-generated fields
 - Conservation properties
- Consistency in the time-dimension
 - Representation of climate signals
 - Assessment of trends

Reanalysis quality and the observing system

- Use of a fixed data assimilation system improves consistency
- Changes in accuracy reflect changes in the observing system

• Ideally, accuracy should improve with time as additional observations become available

ERA-40 fit to 500 hPa temperature observations from radiosondes

... and representation of Tropical Cyclones:

Reanalysis quality and the observing system

• Changes in accuracy reflect changes in the observing system

• The other side of the coin: Effect of bias in the system

ERA-40 mean fit to surface temperature observations from land stations (Simmons et al. 2004)

Observing systems used in ERA-40 and ERA-Interim

How far back can we go in time?

- NOAA-CIRES 20th Century Reanalysis V1: 1908-1958 (Compo *et al.* 2006; 2009)
- Uses NCEP's Climate Forecast System, T62 (~200 km) on 28 pressure levels
- HadISST-1.1 (Rayner *et al.* 2003)
- Ensemble Kalman Filter (EnKF) with 56
 members
- Surface pressure data only (International Surface Pressure Databank 1.1 and ICOADS version 2.4)
- Version 2: 1892-2008

Key ideas:

- Use of a stable observing system to prevent spurious trends
- Use of an ensemble to provide uncertainty information

Reanalysis of sparse observations

Whitaker, Compo, and Thépaut 2009

Upper-air observations pre-1957

The Comprehensive Historical Upper Air Network (CHUAN, Stickler et al. 2009)

Can we get *both* high accuracy *and* meaningful trend estimates?

Outline

- Introduction to reanalysis
 - The basic idea
 - Products and applications
 - Quality requirements
 - The observations
- Diagnostics
 - Fit to data, forecast quality
 - Mass, energy, and water
 - Stratosphere
- Biases and trends

Quality requirements for reanalysis products

- Accurate representation of observations
 - Departures from assimilated data
 - Comparisons with independent data
- Physical coherence of analysed fields
 - Forecast quality
 - Validation of model-generated fields
 - Conservation properties
- Consistency in the time-dimension
 - Representation of climate signals
 - Assessment of trends

Fit to wind observations: Successive ECMWF reanalyses

- Increasing accuracy with successive reanalyses
- ECMWF Operations represent potential for improvement

Upper-air temperatures in the Arctic (Jan 2000)

Reduced bias

Improved vertical consistency

Improved consistency between background and analysis

ERA-Interim achieves similar accuracy with smaller analysis increments

Quality of (re-)forecasts

Updated from Simmons & Hollingsworth (2002)

Operational forecasts from ECMWF:

 improvements over time due to system upgrades (model and data assimilation)

Re-forecasts produced with ERA-Interim:

- quality is more uniform globally and in time
- improvements relative to ERA-40 reflect 5 years of IFS development

Mass budget

(P. Berrisford)

Cross equatorial mass flux in

NH and SH mass in ERA-Interim

Cross equatorial mass flux in ERA-Interim and ERA-40

Energy budget

- TOA balance improved in ERA-Interim
- Surface energy balance worse, esp. over oceans

Water

Improvements in ERA-Interim, due to:

- Revised humidity analysis
- Better model physics
- 4D-Var
- Improved bias corrections for radiance data

Daily mean total column water vapour (1989-1998)

ERA-Interim – ERA-40

ERA-Interim – SSM/I

Mean daily precipitation (1989-1998)

Precipitation spinup/spindown for ERA-40 and ERA-Interim

Precipitation spinup/spindown for ERA-Interim

total precipitation ERA_Interim spinup from +12h to +36h 20-year 1989-2008 YEAR

Climate indices

120

-90

-60

- 30

-30

-60

-90

Stratospheric circulation: Representation of QBO

ERA-40 1979-1988 ERA_Interim 1989-2009 equatorial 002S-002N and 000E-360E Zonal wind (monthly mean)

ERA-Interim

ERA-40 compared with rocketsondes

(A. Untch)

Particle dispersion

Particle distributions after 50 days of backward

Mean age of air in the lower stratosphere

Based on 20-year CTM runs, using reanalysed winds from ERA-40 and ERA-Interim

Observational estimates derived from ER-2 aircraft measurements of CO2 and SF6

Figure updated from Monge-Sanz et al. 2007

Outline

- Introduction to reanalysis
 - The basic idea
 - Products and applications
 - Quality requirements
 - The observations
- Diagnostics
 - Fit to data, forecast quality
 - Mass, energy, and water
 - Stratosphere
- Biases and trends

"Ignore it, Jeffries. It's unscientific."

Biases and trends

Reanalysis is considered unsuitable for trend estimation (IPCC AR4)

In theory, temperature trends from reanalysis should be superior

In practice, this requires dealing with biases in models and observations

Time series of 2m land temperature anomalies (K)

Differences of monthly values from CRUTEM3

ERA-15 • ERA-40

ERA-Interim

2m temperature anomalies (K) relative to 1989-1998

Time series of 2m land humidity anomalies

12m running averages, with ERA sampled over land as HadCRUH (Willett et al., 2008)

ERA-Interim: Difference between (1999-2008) and (1989-1998)

Simmons et al. 2009 (JGR, in press)

Can we do as well for upper-air trends in reanalysis?

Problem: There is no single true reference data set

Reanalysis can be used to remove biases from observations

Variational bias correction of satellite radiances in ERA-Interim Dee and Uppala 2009 (QJRMS, in press)

Global mean bias corrections for MSU channel 2 (lower troposphere)

Equator crossing times for NOAA Polar Orbiting satellites

- Drift in polar orbit causes changes to the total heat budget of the satellite
- This affects instrument self-calibration

MSU instrument bias due to warm-target fluctuations

MSU instrument errors are identified based on all information available to the reanalysis

Upper-air observations pre-1957

The Comprehensive Historical Upper Air Network (CHUAN, Stickler et al. 2009)

Can we get *both* high accuracy *and* meaningful trend estimates?

Can satellite radiance data be anchored to radiosondes?

Control:

Assimilate surface pressure and radiosonde temperature data only

Experiment 1:

Add AMSU-A radiance data from a single satellite, subject to variational bias correction

Experiment 2:

Add 4 more AMSU-A instruments

Experiment 1: A single AMSU-A instrument

Mean analysis differences

1456 - 1455 zonal mean analysis differences 200905 Units: Celsius

Temperature

Experiment 2: Five AMSU-A instruments

Radiosonde departures

1457 - 1455 zonal mean analysis differences 200905 Units: Celsius

Conclusions

- Historic observations are our most important resource for understanding the atmospheric circulation, predictability, and climate
- Reanalysis presents this information in an accessible and physically coherent form
- The major challenge in data assimilation for reanalysis is to properly manage changes in the observing system
- Accurate representation of climate signals and trends is the ultimate goal and the most difficult to attain
- We are learning how to do it..