



## Impact of Air-Sea Interactions on Extra-Tropical Cyclones

P. Ola G. Persson and many others CIRES/NOAA/ESRL/PSD3, Boulder, Colorado

### **OBJECTIVES**

synopsis of current knowledge of how air-sea interaction phenomena impact extratropical cyclones

- previous studies as examples, augmented with some previously unpublished material
- only the key points of numerous topics can be discussed refer to bibliography

## **OUTLINE**

- 0) surface fluxes NOT primary forcing factor for ETC
- 1) impact of surface fluxes
  - timing relative to cyclone evolutionary stage
  - different flux/PBL schemes (FASTEX case, off-line tests)
- 2) key sensitivity areas (relative to cyclone features), front-relative fluxes
- 3) impact of spatially and temporally varying ocean characteristics
  - wave characteristics (surface roughness, stress-wind direction mismatch)
  - sea spray
  - sea-surface temperature
- 4) summary and suggestions for future work

ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008 Readin

#### **Basic M-O Similarity Equations for Surface Flux Definitions**

$$\tau = -\rho \overline{uw} \equiv \rho u_*^2$$
 stress

$$\mathbf{H}_{s} = \rho \mathbf{c}_{\mathbf{P}} \operatorname{wt} \equiv -\rho \mathbf{c}_{\mathbf{P}} \mathbf{u}_{*} \mathbf{t}_{*} ,$$

Sensible heat flux

 $H_L = \rho L_v wq \equiv -\rho L_v u_* q_*$ . latent heat flux

$$\frac{\text{Modeling - basic equations}}{\tau = \rho C_{Dr} S^{2}}$$

$$H_{s} = \rho c_{P} C_{Hr} S(\Theta_{s} - \Theta_{r})$$

$$H_{L} = \rho L_{v} C_{Er} S(Q_{s} - Q_{r})$$

$$H_{L} = \rho L_{v} C_{Er} S(Q_{s} - Q_{r})$$

$$C_{Dr} = c_{Dr}^{2} = \left[\frac{k}{\ln(r/z_{0}) - \psi_{m}(r/L)}\right]^{2}$$

$$C_{Hr} = c_{Dr} c_{Hr} = \left[\frac{k}{\ln(r/z_{0}) - \psi_{m}(r/L)}\right] \left[\frac{k}{\ln(r/z_{T}) - \psi_{h}(r/L)}\right]$$

$$C_{Er} = c_{Dr} c_{Er} = \left[\frac{k}{\ln(r/z_{0}) - \psi_{m}(r/L)}\right] \left[\frac{k}{\ln(r/z_{0}) - \psi_{m}(r/L)}\right]$$

ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008

# Impact of Surface Fluxes and Flux Timing -seven western Atlantic Ocean rapid-deepening cases (Kuo et al 1991)

-rapid deepening starts at T = 0 h



- significant impact 24 h before rapid deepening, whether or not done during rapid deepening

ECMWF Workshop on Ocean-Atmosphere Interactions 10-12 Nov., 2008

## **Storm Sensitivity to Flux/PBL Variations**

- IOP1 of FASTEX (North Atlantic Ocean, Jan. 8 - Jan. 11, 1997)

- development/movement of 1 parent cyclone (W0) and 3 frontal waves (W1, W2, W3)



## **Storm Sensitivity to Flux/PBL Variations**

#### MM5 modified version 3-5

 $\Delta X = 81, 27$  km; 2-way nest 50 levels, 20 levels below 1500 m Grell (1993) cumulus param Mixed-phase explicit moisture (Reisner et al 1998) ECMWF I.C. , B.C. enhanced with obs 84 h simulation (12Z 1/7/97- 00Z 1/11/97)

#### Surface Flux/PBL schemes

BLK (Blackadar 1979; Zhang & Anthes 1982) -1<sup>st</sup> order, Ri-dep. sfc flux MRF (Hong & Pan 1996) -1<sup>st</sup> order, Ri-dep. sfc flux GYS (Shafran *et al.* 2000) -2<sup>nd</sup> order (TKE), Ri-dep sfc flux BKT (Burk & Thompson 1989) - 2<sup>nd</sup> order (TKE), Louis (1979) sfc flux

#### Key Results

- frontal waves replicated
- evolutions different
- none produced correct central p & track for all 3
- GYS & BKT tend to be further off for central p



ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008

Reading, U. K.

## **Storm Sensitivity to Flux/PBL Variations**

-Varying PBL/sfc fluxes impacted W1 & W2 tracks most (~ 1000 km difference)

-GYS & BKT track tend to be further off

-MRF best for W1 track & W2 central p

#### **Summary**

-Central p & track differences of 30 mb & 1000 km

- MRF run performed best

- error similarities for GYS & BKT suggest common problem for 2<sup>nd</sup> order schemes

-Large differences between GYS, BLK, and MRF despite having same surface flux scheme suggest PBL redistribution more important than surface fluxes



ECMWF Workshop on Ocean-Atmosphere Interactions

## **Off-line flux testing**

### Brunke et al (2003)

- 12 different surface flux parameterization schemes:

| Algorithm                                                             | Acronym   | Reference(s)                                                           |
|-----------------------------------------------------------------------|-----------|------------------------------------------------------------------------|
| BDY                                                                   |           | Depuis et al. (1997);                                                  |
| With convective gustiness                                             | BDY-C     | Yelland and Taylor (1996)                                              |
| Without convective gustiness                                          | BDY-NC    |                                                                        |
| Bourassa-Vincent-Wood                                                 | BVW       | Bourassa et al. (1999)                                                 |
| Community Climate Model version 3                                     | CCM3      | Large and Pond (1981, 1982)                                            |
| Clayson-Fairall-Curry                                                 | CFC       | Clayson et al. (1996)                                                  |
| Coupled Ocean-Atmosphere Response Experiment version 3.0              | COARE 3.0 | Fairall et al. (1996, 2003)                                            |
| European Centre for Medium-Range Weather Forecasts model              | ECMWF     | Beljaars (1995a,b)                                                     |
| Goddard Earth Observing System reanalysis version 1                   | GEOS-1    | Large and Pond (1981);<br>Kondo (1975)                                 |
| Goddard Satellite-Based Surface Turbulent Fluxes version 2            | GSSTF-2   | Chou (1993)                                                            |
| Hamburg Ocean-Atmosphere Parameters from Satellite Data               | HOAPS     | Smith (1988)                                                           |
| Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations | J-OFURO   | Kondo (1975); Large and Pond<br>(1982); Kubota and Mitsumori<br>(1997) |
| The University of Arizona                                             | UA        | Zeng et al. (1998)                                                     |

- 12 maritime tropical and midlatitude measurement programs, incl. FASTEX/CATCH (U < 30 m s<sup>-1</sup>)
- objectively evaluated ability to reproduce observed  $\tau$ , H<sub>s</sub> and H<sub>l</sub> Conclusions:
- four least problematic: COARE 3.0, University of Arizona (UA), ECMWF, NASA Goddard (GEOS-1)
- only COARE ranked in top 4 for each of three flux categories

| Category              | Inertial-dissipation<br>wind stress | Covariance<br>LH flux               | Covariance<br>SH flux                 | Overall:<br>Inertial-dissipation<br>au and<br>covariance LH, SH | Overall:<br>Avg of inertial<br>dissipation<br>and covariance<br>$\tau$ , LH, SH |
|-----------------------|-------------------------------------|-------------------------------------|---------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|
| A (least problematic) | COARE 3.0<br>ECMWF<br>GSSTF-2<br>UA | COARE 3.0<br>GEOS-1<br>UA           | CCM3<br>COARE 3.0<br>ECMWF<br>GEOS-1  | COARE 3.0<br>ECMWF<br>GEOS-1<br>UA                              | COARE 3.0<br>ECMWF<br>GEOS-1<br>UA                                              |
| В                     | BDY-C<br>BDY-NC<br>BVW<br>HOAPS     | CCM3<br>CFC<br>GSSTF-2<br>HOAPS     | BVW<br>CFC<br>HOAPS<br>UA             | BVW<br>CCM3<br>GSSTF-2<br>HOAPS                                 | BDY-NC<br>BVW<br>CCM3<br>CFC                                                    |
| C (most problematic)  | CCM3<br>CFC<br>GEOS-1<br>J-OFURO    | BDY-C<br>BDY-NC<br>ECMWF<br>J-OFURO | BDY-C<br>BDY-NC<br>GSSTF-2<br>J-OFURO | BDY-C<br>BDY-NC<br>CFC<br>J-OFURO                               | BDY-C<br>GSSTF-2<br>HOAPS<br>J-OFURO                                            |
| CMWF Workshop o       | n Ocean-Atmosph                     | ere Interactions                    | 10-12 Nov.,                           | 2008 Re                                                         | eading, U. K.                                                                   |

## **Off-line flux testing**

- using FASTEX (*R/V Knorr*) data (incl. wave data)

#### **Blackadar (BLK)**

 $z_{0} = 0.032 \text{ u}_{*}^{2}/\text{g} + .0001$   $S = [(u^{2} + v^{2}) + U_{c}^{2}]^{0.5}$   $U_{c} = 2^{*}(\theta_{s} - \theta_{a})^{0.5}$ uses z/L = Ri<sub>b</sub> ln(z/z<sub>0</sub>) to circumvent need for iteration  $z_{T} = z_{Q} = z_{0}$ COARE 3.0 - iterates using z/L (M-O) to converge

 $z_0 = \alpha u_*^2 / g + 0.11 v / u_*$ 

where v is the molecular viscosity and

 $\alpha$  = .011 for U  $\leq$  10 m s^{-1}

 $= .011 + (U-10)^{*}(.018-.011)/(18-10)$  for 10 m s<sup>-1</sup> < U < 18 m s<sup>-1</sup>

= .018 for  $U \ge 18 \text{ m s}^{-1}$ 

 $z_T \neq z_Q \neq z_0$ 

COARE Options: wave age (Oost et al 2001) (O)  $z_{0Oe} = (50/2\pi) L_p (u_* / C_p)^{4.6} + 0.11v/u_*$ 

wave slope (Taylor and Yelland 2001) (S)  $z_{0TY} = 1200 h_{sig} (h_{sig}/L_p)^{4.5} + 0.11 v/ u_*$ 



 $C_p$  - phase speed of the dominant wave

ECMWF Workshop on Ocean-Atmosphere Interactions



## **Key Flux Regions of Extratropical Cyclones**

"In advance of developing Pacific cyclones" - surface fluxes in advance of developing Pacific cyclones, and before the rapid deepening stage, preconditioned the near-surface environment to the extent that explosive deepening occurred. Reed and Albright (1986) and Gyakum and Danielson (2000)

Warm sector, ahead of cold front, S of storm track - with adjoint model, idealized maritime cyclone, Langland *et al.* (1995) showed that surface sensible heat fluxes in the warm sector just ahead of the cold front and south of storm track produced the main impact on the cyclone evolution

J - cost function  $C_H$  - sensible heat transfer coefficient



Field of sensitivity to surface heat-transfer coefficient,  $\partial J/\partial C_H$ , (isopleth = 10 hPa) accumulated between 60 and 90 h. Positive  $\partial J/\partial C_H$  indicates H<sub>s</sub> is anticyclogenetic for 90 h central pressure. Negative values are hatched. Blue dashed isopleths show surface pressure at 70 h. Red dots show location of low at 30 h, 70 h, and 90 h in this non-linear forecast with sea-surface-temperature anomaly. Heavy dashed line shows the low center track. The approximate location of the surface front and a low-level, warm sector wind vector are also depicted. J is the cost function for the adjoint model. Adapted from Langland et al (1995).

ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008

## **Front-Relative Fluxes - Observations**

Composite of 10 FASTEX cases for *R/V Knorr* path through open wave of cyclone (Persson et al 2005) Time normalized by warm sector duration (onset of moistening, frontal wind shift)

-1.5

-1.5



#### **Conclusions (cont.):**

- e) patterns of heat and momentum fluxes should affect surface potential vorticity generation, and have dynamical implications for stability of the frontal zone for frontal wave development.
- f) wave heights increase from eastern half of warm sector to frontal passage, remaining high through most of post-frontal regime before decreasing
- ECMWF Workshop on Ocean-Atmosphere Interactions

#### **Conclusions:**

- a) moistening & warming lead to minima in H<sub>sc</sub> and H<sub>lc</sub> just before frontal passage, despite the strong surface winds at this time
- b) though warm-sector  $H_{sc}$  minimum negative,  $H_{sc}$  and  $H_{lc} > 0$ - positive impact on synoptic development
- c)  $\tau_{sc}$  maximum just before frontal passage during the ws peak (LLJ)
- d) second  $\tau_{sc}$  maximum of comparable magnitude in middle of postfrontal regime.



### Wave characteristics

-stress-wind direction mismatch -surface roughness - wave height, wave age, wave slope

### Sea spray

**Sea-surface temperature** 

Wave characteristics - stress-wind direction mismatch (Persson et al. 2004)



ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008

## **Storm Sensitivity to Wave Stress**

- idealized cyclone development coupled with wave model (Doyle 1995)



-Young waves significantly increase  $z_0$ , esp. near cold front, ahead of warm front, & in SW storm sector (behind cold front)

-Wind speed decreased 12-20%, central p response complex but varied 8-10 mb

-Increase  $\tau$  despite decreased winds, H<sub>s</sub> & H<sub>I</sub> increased 30-60% in SW quadrant

ECMWF Workshop on Ocean-Atmosphere Interactions 10-12 Nov., 2008

Wave characteristics- surface roughness (wave age) (Zhang et al 2006)



Sea spray (Andreas 2003; Zhang et al 2006)



## Spatially/Temporally Varying Ocean Characteristics Wave age & Sea spray (Zhang et al 2006)



ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008









**E**R

EC

Sea Surface Temperature - Coastal California & El Niño (Persson et al 2005)



Sea Surface Temperature - Coastal California & El Niño (Persson et al 2005)

- normal (non- El Niño) SST would have produced  $\Delta \theta_e$  that was 0 K or < 0 K, & no increase in CAPE

- less recognized mechanism for enhancing CA precip during El Niño years



## Summary

# A. Impact on ETCs determined by timing and location of fluxes wrt evolution & key structures

- larger impact before the rapid deepening phase.
- storm intensity sensitive to heat fluxes occurring in warm sector & near the surface warm front
- storm track and intensity more sensitive to vertical redistribution by PBL schemes than to magnitude differences between surface flux parameterizations (tentative)
- B. Intensity sensitivity to surface fluxes clearly illustrated by impacts of coupled wave models and sea-spray parameterizations
  - wave drag decrease near-surface winds (few m/s) & often increase storm's central pressure (few mbs)
  - sea-spray increases extratropical storm intensity (increase winds, decrease central pressure) by magnitudes comparable to wave-drag effects.
  - largest sensible/latent heat flux increases occur in favored warm sector & SW quadrant
  - only former region corresponds to maximum sensitivity area
  - when wave drag and sea-spray effects both included, results similar to effects of just sea spray early in simulation and just wave drag late (ETC filling phase)

#### C. Spatial variability of SST also impacts evolution of ETCs and resulting precipitation

- SST gradients near North Atlantic Gulf Stream significantly impact storm evolution
- California coastal fluxes impact coastal precip from landfalling front
- temporal SST variability (e.g., ENSO effects in coastal CA) suggested
- no studies done on feedback effects of more rapid SST changes possibly occurring with strong ETCs (though such effects important for tropical hurricanes)

## **Future Work**

- A. Focus on better understanding of impacts of spatially and temporally variable surface characteristics
  - clearer elucidation of sensitivity of cyclone evolution & structure to flux location relative to frontal features & life-cycle stage
  - separate impacts of surface flux interfacial schemes from the PBL schemes
  - may be necessary to use sophisticated modeling techniques or dynamically important diagnostic parameters (e.g., adjoint model; PV diagnostics)

#### **B.** Incorporate best off-line flux schemes into three-dimensional models

- if surface flux parameterization improvements needed, do additional off-line tests that include more sea-surface characteristics (e.g., wave characteristics, sea-spray, stress-wind direction mismatch)
- to facilitate off-line tests, additional measurements in high-wind conditions associated ETCs needed, where the storm-relative environment is well documented

#### C. Conduct studies of impacts of aerosol fluxes (e.g., sea salt)

- effects likely on microphysics and possibly evolution
- require use of models such as the WRF/Chem model (Grell et al. 2005)
- **D.** Consider impacts of surface flux transitions at sea-ice edge
  - surface flux impacts on polar low development have been studied (flow from the sea ice to the open ocean)
  - more work needed understanding impact of surface flux changes as ETCs move from open water to over the sea ice - potentially important for understanding ETC impact on disappearing sea ice and as Arctic Ocean includes more open water
  - require improved coupled sea-ice dynamics & fluxes for potentially very stable conditions

## **Front-Relative Fluxes – Wave Observations**



ECMWF Workshop on Ocean-Atmosphere Interactions

10-12 Nov., 2008

Reading, U. K.



Wave characteristics - stress-wind direction mismatch (Persson et al. 2004)



ECMWF Workshop on Ocean-Atmosphere Interactions 10-12 Nov., 2008

## Sea Spray Parameterization (Andreas et al 2008)



FIG. 1. Temperature and radius evolution of a spray droplet with initial radius 100  $\mu$  ( $r_0$ ), initial temperature 20°C ( $T_s$ ), and initial salinity 34 psu. This droplet is flung into air with temperature  $18^{\circ}C(T_{a})$  and relative humidity 90% (RH); the barometric pressure is 1000 mb. The microphysical quantities  $T_{eq}$ ,  $r_{eq}$ , T, and r characterize the evolution [see (2.1) and (2.2)].

FIG. 2. The radius-specific spray sensible  $(Q_s)$  and latent  $(Q_t)$  heat fluxes [from (2.4) and (2.6)] as functions of the radius at formation  $(r_0)$  for three values of the wind speed at a 10-m reference height  $(U_{10})$ . For these calculations, the water temperature ( $T_{\rm c}$ ) is 20°C, the air temperature ( $T_{\rm c}$ ) is 18°C, the RH is 90%, the barometric pressure is 1000 mb, and the surface salinity is 34 psu. H, from ocean for evaporating drop

1000

Reading, U. K.

$$\begin{split} H_{L,T} &= H_L + \alpha \overline{Q}_L, \text{ H}_{s} \text{ due to } \Delta T \text{ of spray drop} \\ H_{s,T} &= H_s + \beta \overline{Q}_S - (\alpha - \gamma) Q_L \\ H_s \text{ from atmosphere for evaporating drop} \\ Q_{L,sp} &= \alpha \overline{Q}_L = \rho_s L_v \bigg\{ 1 - \bigg[ \frac{r(\tau_{f,50})}{50 \ \mu\text{m}} \bigg]^3 \bigg\} V_L(u_*) \quad V_L(u_*) = 1.10 \times 10^{-7} u_*^{2.22} \\ Q_{S,sp} &= \beta \overline{Q}_S - (\alpha - \gamma) \overline{Q}_L = \rho_s c_{ps} (T_s - T_{eq,100}) V_S(u_*) \quad V_S(u_*) = 2.30 \times 10^{-6} u_*^3 \\ H_{s,T} &= H_s + Q_{S,sp}. \end{split}$$

ECMWF Workshop on Ocean-Atmosphere Interactions 10-12 Nov., 2008

Sea Surface Temperature - Gulf Stream (Giordani and Caniaux 2001)



Vertical section across the occlusion  $(48^\circ-38^\circ \text{ W at} \text{ the latitude } 50^\circ \text{N})$  of the turbulent buoyancy flux (W m<sup>-2</sup>) and turbulent momentum flux (N m<sup>-2</sup>) in (a) ER, (b) EC, and (c) EW, for 1200 UTC 14 Feb.

ECMWF Workshop on Ocean-Atmosphere Interactions



ECMWF Workshop on Ocean-Atmosphere Interactions 10-12 Nov., 2008

and (f) EW, for 1200 UTC 14 Feb.

