Impact of Forcing/Coupling on Atmospheric and Oceanic Forecasts

herve.giordani@meteo.fr

GAME/CNRM (Météo-France/CNRS), Toulouse, France

Workshop, ECMWF-Reading, UK, 10-12 November 2008

Oceanic state in atmospheric models: SST

Tropical cyclones (Emanuel, 2005)

Middle latitude Storms (Doyle et Warner 1993; Giordani & Planton 2001; Ren et al., 2004; Pullen et al., 2006)

MABL circulations induced by oceanic fronts (Hyodae Seo, 2005; Giordani & Planton 1998)

Heavy precipitating events in the Mediterranean basin (Millan et al., 1995; Romero et al., 1997; Pastor et al., 2001; Homar et al., 2003)

Sensitivity of Mesoscale Convective Systems to:

- SST
- Surface flux parameterization
- Coupled ocean mixed-layer model (heat content)

Sensitivity of the **Mixed-Layer** to:

• surface heat & mass fluxes

FASTEX-CATCH - IOP15

CATCH-FASTEX-IOP15

Aude Case

Flash flood in the AUDE department 12-13 November 1999MCS quasi-stationnary; 551 mm in 24h;More than 30 deceases.(Ducrocq et al. 2003)

Gard Case

Flash flood in the GARD department 8-9 September 2002 MCS quasi-stationnary; 691 mm in 24h; 24 deceases (Delrieu et al. 2005)

Hérault Case

Rhône flood, December 2003 (HÉRAULT department, 3 December 2003) Quasi stationary frontal system; 198 mm in en 24h; 7 deceases

Atmospheric Model

Atmospheric Model : MESO-NH (Lafore et al. 1998)

Mesoscale Non-Hydrostatic Model

microphysique scheme : Pinty et Jabouille (1998) turbulence scheme : Cuxart *et al.* (2000) radiative scheme : RTTM (Mlawer *et al.* 1997)

Grid Nesting :

Large domain $\Delta x = 9.5 \text{km}$ \Rightarrow parameterized convection (Kain et Fritsch 1990; Bechtold *et al.* 2001)

Small domain $\Delta x=2.4$ km \Rightarrow explicit convection

Initialisation with ARPEGE analyses.

The Mesoscale OA Coupled Model

Experiences:

Forced Oceanic Simulation: Aude

Forced Oceanic Simulation: Hérault

Forced Oceanic Simulation: Hérault

Impact of Heavy Precipitation on the Mixed-Layer

Forced oceanic Simulation: Hérault

Impact of the forcing frequency on the Mixed-Layer response

Coupled OA Model

Comparison Forced/Coupled Model

Coupled OA Model

Synthesis
• The spatial averaged SST is a relevant parameter for MCS forecasts. The LLJ plays the role of an integrator of the SST small scale structures.
• Great dispersion in the surface flux (parameterization) > impact on the precipitation

similar as a change of 1 ℃ in SST.

• The coupling attenuates the oceanic and atmospheric responses. The coupling decreases the accumulated precipitation similarly as a decrease of $\sim 1 \,^{\circ}$ in SST.

- The oceanic mixed-layer response to high-resolution atmospheric forcing.
 - LLJs > flux > Mixed-Layer cooling and deepening.
 - Precipitation > fresh internal boundary layers > collapse the mixing.
 - Strong sensitivity to the surface forcing frequency.
 - Wind-stress > strong currents which contributes to enhance floods.

Major Issues

• . . .

Key points for coupled OA models

- Usefulness of high resolution SST fields ?
- What are the best surface fluxes for a coupled system ?
- What is the optimal coupling frequency ?
- What mixing parameterizations (diffusion/convection) for the ocean ?

What Surface Fluxes for Ocean Models ?

Applications

An Intermediate Coupled Model. What for?

• High resolution processes studies: tropical cyclones, African monsoon (AMMA-EGEE), coastal breezes/fog, SST front, gust wind (mistral, tramontane), ...

• Towards an operational simplified coupled OA system: Ocean Mixed-Layer coupled to AROME. Good strategy ?

SST and mixed-layer heat content more realistic and coherent with the atmosphere evolution. Sequential initialization with the MERCATOR analyses.

• Mesoscale operational applications: full 3D coupled OA model ?